van der Linde EEMK D, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJM, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7.
Article
Google Scholar
Mills JL, Troendle J, Conley MR, Carter T, Druschel CM. Maternal obesity and congenital heart defects: a population-based study. Am J Clin Nutr. 2010;91(6):1543–9.
Article
CAS
Google Scholar
Boulet SLGS, Riehle-Colarusso T. Health care costs of congenital heart defects. In: Wyszynski DF, Correa-Villasenor A, Graham TP, editors. Congenital heart defects: from origin to treatment (p493–501). New York: Oxford University Press, Inc.; 2010.
Google Scholar
Kathy J, Jenkins AC, Feinstein JA, Botto L, Britt AE, Daniels SR, Elixson M, Warnes CA, Webb CL. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on cardiovascular disease in the young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115(23):2995–3014.
Article
Google Scholar
Butler MR. The influence of maternal contexts on infant outcomes, secondary analysis of WPCR data 2000-2010. Dissertations & Theses - Gradworks; 2014.
Google Scholar
Forest S, Priest S. Intrauterine Tobacco Smoke Exposure and Congenital Heart Defects. J Perinat Neonatal Nurs. 2016;30(1):54–63 quiz E52.
Article
Google Scholar
Mao B, Qiu J, Zhao N, Shao Y, Dai W, He X, Cui H, Lin X, Lv L, Tang Z, et al. Maternal folic acid supplementation and dietary folate intake and congenital heart defects. PLoS One. 2017;12(11):e0187996.
Article
Google Scholar
Yu Feng DY, Yang L, Da M, Wang Z, Lin Y, Ni B, Wang S, Mo X. Maternal lifestyle factors in pregnancy and congenital heart defects in offspring: review of the current evidence. Ital J Pediatr. 2014;40:85.
Article
Google Scholar
Edward W. Gregg JES: Global Health effects of overweight and obesity. N Engl J Med. 2017;377(1):80–1.
Article
Google Scholar
Cai G-j, Sun X-x, Zhang L, Hong Q. Association between maternal body mass index and congenital heart defects in offspring: a systematic review. Am J Obstet Gynecol. 2014;211(2):91–117.
Article
Google Scholar
Persson M, Cnattingius S, Villamor E, Soderling J, Pasternak B, Stephansson O, Neovius M. Risk of major congenital malformations in relation to maternal overweight and obesity severity: cohort study of 1.2 million singletons. BMJ. 2017;357:j2563.
Article
Google Scholar
SL JB, Troendle J, Mills J. Maternal overweight and obesity and risk of congenital heart defects in offspring. Int J Obes. 2014;38(6):878–82.
Article
Google Scholar
Xinyu Tang MAC, Nick TG, Li M, MacLeod SL, Erickson SW, Li J, Shaw GM, Mosley BS, Hobbs CA, National Birth Defects Prevention Study. Obstructive heart defects associated with candidate genes, maternal obesity, and folic acid supplementation. Am J Med Genet A. 2015;167(6):1231–42.
Article
Google Scholar
PT JR, Stothard KJ, Bythell M, Summerbell CD, Bell R. Maternal body mass index and congenital anomaly risk: a cohort study. Int J Obes. 2010;34(9):1371–80.
Article
Google Scholar
KE Best PT, Bell R, Rankin J. Impact of maternal body mass index on the antenatal detection of congenital anomalies. Bjog An Int J Obstet Gynaecol. 2012;119(12):1503–11.
Zhao T. Detection of Congenital Heart Disease in Newborns and Analysis of Its Influencing Factors in Eastern China. Chinese Academy of Medical Sciences, Peking Union Medical College(Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10023-1016235456.htm. Accessed Apr 2016.
LBD Double Burden of Malnutrition Collaborators. Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017. Nat Med. 2020;26;750–9.
Murayama N. Effects of socioeconomic status on nutrition in Asia and future nutrition policy studies. J Nutr Sci Vitaminol (Tokyo). 2015;61(Suppl):S66–8.
Article
CAS
Google Scholar
Christiani Jeyakumar Henry BK, Quek RYC. Are Asian foods as “fattening” as western-styled fast foods? Eur J Clin Nutr. 2020;74:348–50.
Article
Google Scholar
Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput JP, Fogelholm M, Hu G, Johnson WD, Kuriyan R, Kurpad A, et al. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900.
Article
Google Scholar
Collaboration NRF. Trends in adult body-mass index in 200 countries from 1975 To 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377–96.
Article
Google Scholar
Ping F, Xiaoyu W, Zhiwen L, Shufang S, Danting L, Liang Y, Mengxue C, Yunhui G, Rong Z, Yang D, Ruonan D, Tian Q, Yue C, Jing L, Guo C. The association of prepregnancy body mass and weight gain during pregnancy with macrosomia: a cohort study(Chinese). Chin J Prev Med. 2019;53(11):1147–51.
Xiaohong Li SL, Dezhi M, Liu Z, Li Y, Lin Y, Chen X, You F, Li N, Deng K, Deng Y, Wang Y, Zhu J. The association between periconceptional folic acid supplementation and congenital heart defects: a case-control study in China. Prev Med. 2013;56(6):385–9.
Article
Google Scholar
Jun Zhu SL. Atlas of birth defects in China. Bejing: People’s medical publishing house; 2008.
Xiaohong Li ZL, Deng Y, Li S, Dezhi M, Tian X, Lin Y, JiaxiangYang JL, Li N, Wang Y, Chen X, Deng K, Zhu J. Modification of the association between maternal smoke exposure and congenital heart defects by polymorphisms in glutathione S-transferase genes. Sci Rep. 2015;5:14915.
Article
Google Scholar
Nicolas L, Madsen SMS, Lewin MB, Mueller BA. Prepregnancy body mass index and congenital heart defects among offspring: a population-based study. Congenit Heart Dis. 2013;2(8):131–41.
Google Scholar
Joint Data Collection and Analysis Collaboration Group of China Obesity Working Group CO, International Society of Life Sciences. Guidelines for Prevention and Control of Overweight and Obesity in Chinese Adults (Chinese). Beijing: National Health Commission of the People’s Republic of China; 2003.
Google Scholar
Waller DK, Tita AT, Werler MM, Mitchell AA. Association between prepregnancy maternal body mass index and the risk of having an infant with a congenital diaphragmatic hernia. Birth Defects Res. 2003;67(1):73–6.
Article
CAS
Google Scholar
Chen X. The relationship between prenatal BMI and fetal congenital heart disease in Fujian Province. Fujian Med Univ (Chinese). 2014. https://doi.org/CNKI:CDMD:2.1015.008781.
Pritschet LPD, Horne Z. Marginally significant effects as evidence for hypotheses: changing attitudes over four decades. Psychol Sci. 2016;27(7):1036–42.
Article
Google Scholar
Liza H. Kunz JCK: impact of maternal nutrition and metabolism on health of the offspring. Semin Fetal Neonatal Med. 2007;12(1):71–7.
Article
Google Scholar
Cetin I, Alvino G, Radaelli T, Pardi G. Fetal nutrition: a review. Acta Paediatr Suppl. 2005;94(449):7–13.
Article
Google Scholar
Di Renzo GC, Clerici G, Neri I, Facchinetti F, Caserta G, Alberti A. Potential effects of nutrients on placental function and fetal growth. Nestle Nutr Workshop Ser Pediatr Program. 2005;55:73–81 discussion 81-72.
Article
Google Scholar
Sohni V, Dean ZSL, Imam AM, Bhutta ZA. Preconception care: nutritional risks and interventions. Reprod Health. 2014;11(Suppl 3):S3.
Article
Google Scholar
Carmichael PK SL, Gould JB, Stevenson DK, Shaw GM, Lee HC. Maternal pre-pregnancy body mass index and risk of bronchopulmonary dysplasia. Pediatric Res. 2017. https://doi.org/10.1038/pr.2017.90.