The majority of parturient women with CHDs in New York State appear to meet the American College of Cardiology and the American Heart Association recommendations for delivery at facilities with appropriate delivery care, as 75% of CHD patients delivered at Level 3 and RPC hospitals [6]. Moreover, women with more serious defects typically attended high level facilities, with 85% of severe CHD patients and 75% of mild-to-moderate CHD patients meeting the recommendations. The present results mirror the findings by Fernandes et al. (2015) and Maxwell et al. (2014) [20, 21], who reported that approximately 25% of CHD patients attended non-specialty hospitals for surgical care, indicating similar utilization choices for different types of medical needs among CHD patients. With 51 high-level birthing facilities in NYS, the travel time to the closest appropriate care facility, whether by personal or public transport, is relatively short for most women with CHD, especially those in the NYC HSA. Since most Level 3 and RPC centers are located in urban and metropolitan areas, we expected women residing in rural locations to be the farthest from high-level facilities. Still, only 6% of pregnant women with CHDs resided in areas classified as rural and this subgroup with poor access to care represents a very small portion of the CHD population.
Parturient women with CHD in the northernmost HSA areas of Northeastern and Central NY lived relatively close to a Level 1 or 2 birthing hospital but must travel in excess of 100 miles in some instances to reach the nearest Level 3 or RPC facility. Moreover, the logistic regression model showed that increases in drive times resulted in a decreased likelihood that women received care at a Level 3 or RPC facility. Therefore, women in Western and Northeastern NY and those in rural towns across the state were more likely to deliver at a hospital closer than their nearest high-level birthing facility, similar to the findings of a recent study of parturient women residing in rural and remote towns [22]. Consequently, primary care providers should include discussions of delivery locations with women early in pregnancy to determine their care needs and how far they would need to travel for delivery at an appropriate care center. After adjustment for time to travel, CHD severity, other comorbidities, socioeconomic and other demographic factors, rural women were as likely to deliver at higher level birthing facility as their counterparts in NYC. This suggests that most rural urban differences can be explained by geographic and sociodemographic barriers to access to care among rural women. However, after multivariate adjustment, women in non-NYC urban areas are at a distinct disadvantage with regards to utilizing appropriate delivery care suggesting that factors in addition to geographic proximity determine where women residing in these areas deliver their babies.
Non-Hispanic Black and Hispanic women had a significantly shorter drive time to a high-level birthing facility. This is not surprising, as despite recent declines in residential racial segregation, Blacks and Hispanics are more likely to live in urban inner-city areas that have higher numbers of health care facilities [23]. Despite being closer to an appropriate center than other race/ethnicities, Black and Hispanic women were not more likely to utilize services based on multivariate models. In addition, Black and Hispanic women were also more likely to travel farther than their closest appropriate center for delivery which suggest that factors other than geographic proximity may play a role in determining where delivery occurs in these women. Previous research has shown that despite the advantage of residence in proximity to higher level centers, these minorities in particular have a higher prevalence of adverse birth outcomes [24]. Even in urban areas with a high density of delivery hospitals, Black patients often receive care at poorer quality hospitals resulting in adverse infant outcomes [25]. Future research in this area should be directed to examining racial-ethnic disparities in maternal and fetal health among women with CHD despite proximity to high level delivery care. Similarly, poor or mixed income neighborhoods had significantly shorter transit times but that did not translate into an increased utilization of high-level delivery services for women in these areas. Rather women in mixed income neighborhoods were almost half as likely to utilize high-level delivery services than women from high income neighborhoods. These results are consistent with research on health care utilization that show that racial and socioeconomically disadvantaged groups in need of specialized services such as adjuvant chemotherapy in breast cancer patients or radiation therapy among rectal cancer patients are less likely to receive appropriate services despite adequate geographic access [26, 27].
Most women in NYC attend a high-level hospital because it is the only type of facility within their health service area. Furthermore, most RPCs in NYC are also pediatric cardiac surgery centers or have 1 a short distance away. While the average distance to appropriate care for NYC residents is approximately one mile, some parturient women with CHDs traveled a farther distance to attend another facility, which also provided appropriate care. These women may have attended a facility farther away due to the regionalization of care, their physician’s hospital affiliations, insurance network, or their personal preferences, as previously discussed by Fernandes et al. (2015) [20].
Women in the HSAs surrounding NYC, including the Mid-Hudson and Nassau-Suffolk HSAs, were also more likely to travel farther than their nearest high-level facility for delivery. Previous examinations of travel patterns for CHD patients undergoing surgery showed that 51% of CHD patients who attended a specialty care center traveled farther than the nearest one [28]. While women in both of these areas have a number of appropriate care facilities within close proximity, 41% of women in the Mid-Hudson area who traveled farther to another appropriate care facility delivered at a NYC hospital, compared to only 15% of women in the Nassau-Suffolk area, demonstrating different travel patterns surrounding NYC.
Interestingly, women from the Nassau-Suffolk area also accounted for nearly a third of women who attended a Level 1 or 2 hospital that was farther away than the closest appropriate care facility. Women in western NYS were also more likely to attend a lower level hospital that was farther away. Although women traveled further for lower level care, the additional distance traveled was relatively small. The present study was unable to assess characteristics of women who attended a lower level hospital located farther away than the closest appropriate care facility due to small sample sizes; however, additional analyses are warranted to understand the behavior of this subpopulation.
Based on the Anderson behavioral model, there are components to the use of health services: predisposing characteristics, enabling resources, and need [29]. We included two enabling factors (geographic proximity to appropriate care facilities and availability of public transportation) and multiple predisposing characteristics, such as age, CHD severity, comorbidities, race, and insurance, in our analyses. However, there are other enabling factors that we were unable to examine on an individual level and had to approximate at the census-tract level, such as poverty. Future analyses should seek to examine additional individual-level enabling factors affecting access to appropriate care and healthcare utilization among pregnant women with CHD.
As expected, travel times via public transportation were longer than travel times via motor vehicle. For most of the state, including the well-connected New York City metro area, it would take almost two to three times longer to reach both the actual listed delivery hospital and closest appropriate care facility via public transportation. Therefore, spatial accessibility within urban areas can still pose a challenge, especially for minorities and low-income urban residents who are more likely to depend on public transportation. This compounds the barriers already faced by these individuals regarding accessing appropriate care. Public health leaders should seek to work with public transportation leaders to improve the number of routes that stop at health care facilities to improve accessibility and reduce travel times.
The present study is one of the few studies that has sought to estimate distance to delivery care via both personal and public transportation for women with CHDs, a subgroup of pregnant women that is in greater need of specialty care. In addition, we have examined whether women attended their nearest delivery hospital or traveled further to a hospital with more services, important distinctions in the examination of healthcare utilization. We have also identified areas within NYS that could benefit from additional locations with higher levels of perinatal and maternal care in order to reduce the travel burden for women with CHDs.
A strength of the present study was the high geocoding rate accomplished, with over 98% of the maternal addresses successfully geocoded. Only 13 residents (1.4%) could not be geocoded due to the P.O. Box listed as their address on the medical record. However, the exclusion of these women from the analysis may have resulted in an underestimation of the distance to care since they likely resided in more rural areas farther from care centers.
There are several potential limitations of this study. Due to the different demographic and geographical characteristics of NYS compared to other states, this study may not be generalizable to the entire US population. Moreover, hospitalization records do not contain information on socioeconomic variables, such as income, occupation, and educational level, which are important influencers on proximity and access to care. As a result, the present study relied upon aggregate data at the census tract level in our predictive models on high distance to appropriate care. In some instances, the census data assigned to an individual based on her residence may not be reflective of her actual status. We did not have access to birth records linkages which may provide a record of maternal characteristics. The small sample size limited our analysis of demographic characteristics, especially within analyses of travel patterns. The small sample did not allow for analyses by severity of CHD and as only 32 women (4%) in the sample resided in rural areas, it was difficult to assess the association between rural location and access to appropriate care. We have combined Level 3 and RPCs to represent adequate level of care in parturient women with CHD. While the main focus of the hierarchal system may be care for high risk newborns, facilities capable of providing specialized care for newborns (Level 3 and RPC) generally include maternal-fetal medicine specialists and comprehensive maternal care as well. If women bypassed a Level 3 center to deliver at an RPC farther away this would result in a negative value for the difference variable between appropriate care and care received. Although RPCs provide a higher level of care, based on the NYS regional perinatal designation Level 3 centers would be determined as the closest appropriate center.
Furthermore, the present study only contained data on deliveries within NYS and women may be able to cross state lines to attend closer facilities that would provide appropriate care; however, we were unable to assess whether and how often this occurs as address information for appropriate care facilities outside of NYS were not available.