Moore LE, Rayburn WF. Elective induction of labor. Clin Obstet Gynecol. 2006;49(3):698–704. https://doi.org/10.1097/00003081-200609000-00026.
Article
PubMed
Google Scholar
Henderson J, Redshaw M. Women’s experience of induction of labor: a mixed methods study. Acta Obstet Gynecol Scand. 2013;92(10):1159–67.
PubMed
Google Scholar
Tarimo CS, Mahande MJ, Obure J. Prevalence and risk factors for caesarean delivery following labor induction at a tertiary hospital in North Tanzania: a retrospective cohort study (2000–2015). BMC Pregnancy Childbirth. 2020;20:173. https://doi.org/10.1186/s12884-020-02861-8.
Article
PubMed
PubMed Central
Google Scholar
Lueth GD, Kebede A, Medhanyie AA. Prevalence, outcomes and associated factors of labor induction among women delivered at public hospitals of MEKELLE town-(a hospital based cross sectional study). BMC Pregnancy Childbirth. 2020;20:203. https://doi.org/10.1186/s12884-020-02862-7.
Article
PubMed
PubMed Central
Google Scholar
Debele TZ, Cherkos EA, Badi MB, et al. Factors and outcomes associated with the induction of labor in referral hospitals of Amhara regional state, Ethiopia: a multicenter study. BMC Pregnancy Childbirth. 2021;21:225. https://doi.org/10.1186/s12884-021-03709-5.
Article
PubMed
PubMed Central
Google Scholar
Guerra G, Cecatti JG, Souza JP, Faúndes A, Morais S, Gülmezoglu A, et al. Factors and outcomes associated with the induction of labour in Latin America. BJOG. 2009;116:1762–72.
Article
CAS
PubMed
Google Scholar
Bukola F, Idi N, ’Mimunya M M, et al. Unmet need for induction of labor in Africa: secondary analysis from the 2004–2005 WHO global maternal and perinatal health survey (a cross-sectional survey). BMC Public Health. 2012;12:722. https://doi.org/10.1186/1471-2458-12-722.
Article
PubMed
PubMed Central
Google Scholar
Vogel JP, Souza JP, Gülmezoglu AM. Patterns and outcomes of induction of labour in Africa and Asia: a secondary analysis of the WHO global survey on maternal and neonatal health. PLoS One. 2013;8(6):e65612. https://doi.org/10.1371/journal.pone.0065612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dassah ET, Odoi AT, Opoku BK. Stillbirths and very low Apgar scores among vaginal births in a tertiary hospital in Ghana: a retrospective cross-sectional analysis. BMC Pregnancy Childbirth. 2014;14:289. https://doi.org/10.1186/1471-2393-14-289.
Article
PubMed
PubMed Central
Google Scholar
Gutbir Y, Wainstock T, Sheiner E, et al. Low Apgar score in term newborns and long-term infectious morbidity: a population-based cohort study with up to 18 years of follow-up. Eur J Pediatr. 2020;179:959–71. https://doi.org/10.1007/s00431-020-03593-9.
Article
CAS
PubMed
Google Scholar
Ling CX, Sheng VS. Class imbalance problem. In: Sammut C, Webb GI, editors. Encyclopedia of machine learning. Boston: Springer; 2011. https://doi.org/10.1007/978-0-387-30164-8_110.
Chapter
Google Scholar
American Academy of Pediatrics Committee on Fetus and Newborn; American College of Obstetricians and Gynecologists Committee on Obstetric Practice. The Apgar score. Pediatrics. 2015;136(4):819–22. https://doi.org/10.1542/peds.2015-2651 PMID: 26416932.
Article
Google Scholar
Montgomery KS. Apgar scores: examining the long-term significance. J Perinat Educ. 2000;9(3):5–9. https://doi.org/10.1624/105812400X87716 PMID: 17273212; PMCID: PMC1595023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg. 1953;32(4):260–7.
CAS
PubMed
Google Scholar
Razaz N, Cnattingius S, Joseph K. Association between Apgar scores of 7 to 9 and neonatal mortality and morbidity: population based cohort study of term infants in Sweden. BMJ. 2019;365:l1656. https://doi.org/10.1136/bmj.l1656.
Article
PubMed
PubMed Central
Google Scholar
Getachew B, Etefa T, Asefa A, Terefe B, Dereje D. Determinants of low fifth minute Apgar score among newborn delivered in Jimma University medical center, Southwest Ethiopia. Int J Pediatr. 2020 Mar;4:2020.
Google Scholar
Ehrenstein V. Association of Apgar scores with death and neurologic disability. Clin Epidemiol. 2009;1:45–53. https://doi.org/10.2147/clep.s4782 PMID: 20865086; PMCID: PMC2943160.
Article
PubMed
PubMed Central
Google Scholar
Moster D, et al. The association of Apgar score with subsequent death and cerebral palsy: a population-based study in term infants. J Pediatr. 2001;138(6):798–803.
Article
CAS
PubMed
Google Scholar
Razaz N, Boyce WT, Brownell M, et al. Five-minute Apgar score as a marker for developmental vulnerability at 5 years of age. Arch Dis Child Fetal Neonatal Ed. 2016;101:F114–20.
Article
PubMed
Google Scholar
Haddad B, Mercer BM, Livingston JC, Talati A, Sibai BM. Outcome after successful resuscitation of babies born with apgar scores of 0 at both 1 and 5 minutes. Am J Obstet Gynecol. 2000;182(5):1210–4.
Article
CAS
PubMed
Google Scholar
Ehrenstein V, Pedersen L, Grijota M, et al. Association of Apgar score at five minutes with long-term neurologic disability and cognitive function in a prevalence study of Danish conscripts. BMC Pregnancy Childbirth. 2009;9:14. https://doi.org/10.1186/1471-2393-9-14.
Article
PubMed
PubMed Central
Google Scholar
Sun Y, Vestergaard M, Pedersen CB, Christensen J, Olsen J. Apgar scores and long-term risk of epilepsy. Epidemiology. 2006;17(3):296–301. https://doi.org/10.1097/01.ede.0000208478.47401.b6.
Article
PubMed
Google Scholar
Wiens J, Shenoy ES. Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis. 2018;66(1):149–53. https://doi.org/10.1093/cid/cix731.
Article
PubMed
Google Scholar
Qiao X, Liu Y. Adaptive weighted learning for unbalanced multicategory classification. Biometrics. 2009;65(1):159–68. https://doi.org/10.1111/j.1541-0420.2008.01017.x Epub 2008 Mar 24. PMID: 18363773.
Article
PubMed
Google Scholar
He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–84.
Article
Google Scholar
Qi Y. Random Forest for bioinformatics. In: Zhang C, Ma Y, editors. Ensemble machine learning. Boston: Springer; 2012. https://doi.org/10.1186/1471-2393-9-14.
Chapter
Google Scholar
Menze B, Kelm B, Masuch R, Himmelreich U, Bachert P, Petrich W, et al. A comparison of random forest and its gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics. 2009;10(1):213.
Article
PubMed
PubMed Central
Google Scholar
Yang Q, Wu X. 10 challenging problems in data mining research. Int J Info Tech Dec Mak. 2006;05(04):597–604. https://doi.org/10.1142/S0219622006002258.
Article
Google Scholar
Ma JH, Feng Z, Wu JY, et al. Learning from imbalanced fetal outcomes of systemic lupus erythematosus in artificial neural networks. BMC Med Inform Decis Mak. 2021;21:127. https://doi.org/10.1186/s12911-021-01486-x.
Article
PubMed
PubMed Central
Google Scholar
Khalilia M, Chakraborty S, Popescu M. Predicting disease risks from highly imbalanced data using random forest. BMC Med Inform Decis Mak. 2011;11:51. https://doi.org/10.1186/1472-6947-11-51 PMID: 21801360; PMCID: PMC3163175.
Article
PubMed
PubMed Central
Google Scholar
Batista GEAPA, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor Newsl. 2004;6(1):20–9. https://doi.org/10.1145/1007730.1007735.
Article
Google Scholar
Picek S, Heuser A, Jovic A, Bhasin S, Regazzoni F. The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Transact Cryptographic Hardw Embed Syst. 2019;2019(1):1–29.
Google Scholar
Han H, Wang W-Y, Mao B-H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang D-S, Zhang X-P, Huang G-B, editors. Advances in intelligent computing. Berlin, Heidelberg: Springer; 2005. p. 878–87.
Chapter
Google Scholar
Lunardon N, Menardi G, Torelli N. ROSE: a package for binary imbalanced learning. R J. 2014;6:79.
Article
Google Scholar
Tarimo CS, Bhuyan SS, Li Q, Ren W, Mahande MJ, Wu J. Combining resampling strategies and ensemble machine learning methods to enhance prediction of neonates with a low Apgar score after induction of labor in northern Tanzania. Risk Manag Healthc Policy. 2021;14:3711–20. https://doi.org/10.2147/RMHP.S331077 PMID: 34522147; PMCID: PMC8434924.
Article
PubMed
PubMed Central
Google Scholar
Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, et al. Data mining in the life sciences with random Forest: a walk in the park or lost in the jungle? Brief Bioinform. 2012. https://doi.org/10.1093/bib/bbs034.
Rymarczyk T, Kozłowski E, Kłosowski G, Niderla K. Logistic regression for machine learning in process tomography. Sensors. 2019;19(15):3400. https://doi.org/10.3390/s19153400.
Article
PubMed Central
Google Scholar
Domingos P, Pazzani M. On the optimality of the simple bayesian classifier under zero-one loss. Mach Learn. 1997;29(2):103–30.
Article
Google Scholar
Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49:1225–31. https://doi.org/10.1016/S0895-4356(96)00002-9.
Article
CAS
PubMed
Google Scholar
Blagus R, Lusa L. Boosting for high-dimensional two-class prediction. BMC Bioinformatics. 2015;16:300. https://doi.org/10.1186/s12859-015-0723-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn. 1999;36(1–2):105–39.
Article
Google Scholar
Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to interpreting decision curve analysis. Diagn Progn Res. 2019;3:18. https://doi.org/10.1186/s41512-019-0064-7.
Article
PubMed
PubMed Central
Google Scholar
Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Mak. 2006;26(6):565–74.
Article
Google Scholar
Lie KK, Grøholt EK, Eskild A. Association of cerebral palsy with Apgar score in low and normal birthweight infants: population-based cohort study. Obstet Anesth Dig. 2011;31(3):154–5.
Catlin EA, Carpenter MW, Brann BS IV, Mayfield SR, Shaul PW, Goldstein M, et al. The Apgar score revisited: influence of gestational age. J Pediatr. 1986;109(5):865–8.
Article
CAS
PubMed
Google Scholar
Lee HC, Subeh M, Gould JB. Low Apgar score and mortality in extremely preterm neonates born in the United States. Acta Paediatr. 2010;99(12):1785–9.
Article
PubMed
PubMed Central
Google Scholar
Batista G, Prati R, Monard M. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations. 2004;6(1):20–9.
Article
Google Scholar
Kamei Y, Monden A, Matsumoto S, Kakimoto T, Matsumoto K-i. The effects of over and under sampling on fault-prone module detection. In: First international symposium on empirical software engineering and measurement (ESEM 2007); 2007. p. 196–204. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4343747.
Chapter
Google Scholar
Blagus R, Lusa L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics. 2013;14:106. https://doi.org/10.1186/1471-2105-14-106.
Article
PubMed
PubMed Central
Google Scholar
Riquelme J, Ruiz R, Rodríguez D, Moreno J. Finding defective modules from highly unbalanced datasets. Actas de los Talleres de las Jornadas de Ingenier’ıa del Software y Bases de Datos. 2008;2(1):67–74.
Google Scholar
Sokolova M, Japkowicz N, Szpakowicz S. Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Proceedings of advances in artificial intelligence (AI 2006), lecture notes in computer science, vol. 4304. Heidelberg: Springer; 2006. p. 1015–21.
Google Scholar
Wang L, Chu F, Xie W. Accurate cancer classification using expressions of very few genes. IEEE/ACM Trans Comput Biol Bioinform. 2007;4(1):40–53.
Article
PubMed
Google Scholar
Akosa JS. Predictive accuracy: a misleading performance measure for highly imbalanced data. In: Proceedings of the SAS global forum 2017 conference. Cary: SAS Institute Inc.; 2017. p. 942–2017.
Google Scholar
Bekkar M, Djemaa HK, Alitouche TA. Evaluation measures for models assessment over imbalanced data sets. J Informa Eng Appl. 2013;3(10):27–38.
Google Scholar
Dubey A, Tarar S. Evaluation of approximate rank-order clustering using Matthews correlation coefficient. Int J Eng Adv Technol. 2018;8(2):106–13.
Google Scholar
Guilford JP. Psychometric methods. New York City: McGraw-Hill; 1954.
Google Scholar
Mishra S, Mallick PK, Jena L, Chae G-S. Optimization of skewed data using sampling-based preprocessing approach; 2020. p. 8. https://doi.org/10.3389/fpubh.2020.00274.
Book
Google Scholar
Varotto G, Susi G, Tassi L, Gozzo F, Franceschetti S, Panzica F. Comparison of resampling techniques for imbalanced datasets in machine learning: application to epileptogenic zone localization from Interictal intracranial EEG recordings in patients with focal epilepsy; 2021. p. 15. https://doi.org/10.3389/fninf.2021.715421.
Book
Google Scholar
Chawla NV, Bowyer KW, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.
Article
Google Scholar
Tomek I. Two modifications of CNN. IEEE Transact Syst Man Cybernet. 1976;6:769–72.
Google Scholar
Ling CX, Sheng VS. Cost-sensitive learning and the class imbalance problem. Encyclopedia Machine Learn. 2008;2011:231–5.
Google Scholar
Dormann CF. Calibration of probability predictions from machine-learning and statistical models. Glob Ecol Biogeogr. 2020;29(4):760–5.
Article
Google Scholar
Arabi Belaghi R, Beyene J, McDonald SD. Prediction of preterm birth in nulliparous women using logistic regression and machine learning. PLoS One. 2021;16(6):e0252025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arabi Belaghi R, Beyene J, McDonald SD. Clinical risk models for preterm birth less than 28 weeks and less than 32 weeks of gestation using a large retrospective cohort. J Perinatol. 2021;41(9):2173–81.
Van Calster B, Wynants L, Verbeek JF, Verbakel JY, Christodoulou E, Vickers AJ, et al. Reporting and interpreting decision curve analysis: a guide for investigators. Eur Urol. 2018;74(6):796–804.
Article
PubMed
PubMed Central
Google Scholar
Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C Appl Rev. 2012;42(4):463–84.
Article
Google Scholar