Goyder C. COVID-19: Crystallising the Importance of Patient Safety. Br J Gen Pract. 2020;70(698):449. https://doi.org/10.3399/bjgp20X712373.
Article
Google Scholar
World Health Organization. Coronavirus disease (COVID-19): pregnancy and childbirth: World Health Organization; 2020. Available: https://www.who.int/. Accessed 1 Jan 2022.
Lebel C, MacKinnon A, Bagshawe M, Tomfohr-Madsen L, Giesbrecht G. Elevated Depression and Anxiety Symptoms among Pregnant Individuals during the COVID-19 Pandemic. J Affect Disord. 2020;277:5–13. https://doi.org/10.1016/j.jad.2020.07.126.
Article
CAS
Google Scholar
Moyer CA, Compton SD, Kaselitz E, Muzik M. Pregnancy-Related Anxiety during COVID-19: A Nationwide Survey of 2740 Pregnant Women. Arch Womens Mental Health. 2020;23(6):757–65. https://doi.org/10.1007/s00737-020-01073-5.
Article
Google Scholar
Salehi L, Rahimzadeh M, Molaei E, Zaheri H, Esmaelzadeh-Saeieh S. The Relationship among Fear and Anxiety of COVID-19, Pregnancy Experience, and Mental Health Disorder in Pregnant Women: A Structural Equation Model. Brain Behav. 2020;10(11). https://doi.org/10.1002/brb3.1835.
Abdoli A, Falahi S, Kenarkoohi A, Shams M, Mir H, Jahromi MAM. The COVID-19 Pandemic, Psychological Stress during Pregnancy, and Risk of Neurodevelopmental Disorders in Offspring: A Neglected Consequence. J Psychosom Obstet Gynecol. 2020;41(3):247–8. https://doi.org/10.1080/0167482X.2020.1761321.
Article
Google Scholar
Mortazavi F, Mehrabadi M, KiaeeTabar R. Pregnant Women’s Well-Being and Worry during the COVID-19 Pandemic: A Cross-Sectional Study. BMC Pregnancy Childbirth. 2021;21(1):59. https://doi.org/10.1186/s12884-021-03548-4.
Article
CAS
Google Scholar
Asai K, Wakashima K, Toda S, Koiwa K. Fear of Novel Coronavirus Disease (COVID-19) among Pregnant and Infertile Women in Japan. J Affect Disord Rep. 2021;4:100104. https://doi.org/10.1016/j.jadr.2021.100104.
Article
Google Scholar
Nausheen S, Bhamani S, Makhdoom A, Sheikh L. Fear of COVID-19 among Pregnant Women in Pakistan: A Cross-Sectional Study. Int J Community Med Public Health. 2020;7(12):4749. https://doi.org/10.18203/2394-6040.ijcmph20205145.
Article
Google Scholar
Cardwell MS. Stress: Pregnancy Considerations. Obstet Gynecol Surv. 2013;68(2):119–29. https://doi.org/10.1097/OGX.0b013e31827f2481.
Article
Google Scholar
Coussons-Read ME. Effects of Prenatal Stress on Pregnancy and Human Development: Mechanisms and Pathways. Obstet Med. 2013;6(2):52–7. https://doi.org/10.1177/1753495x12473751.
Article
Google Scholar
Yu Y, Zhang S, Wang G, Hong X, Mallow EB, Walker SO, et al. The Combined Association of Psychosocial Stress and Chronic Hypertension with Preeclampsia. Am J Obstet Gynecol. 2013;209(5):438.e1-438.e12. https://doi.org/10.1016/j.ajog.2013.07.003.
Article
Google Scholar
Ben-Ami I, Maymon R, Svirsky R, Cuckle H, Jauniaux E. Down Syndrome Screening in Assisted Conception Twins: An Iatrogenic Medical Challenge. Obstet Gynecol Surv. 2013;68(11):764–73. https://doi.org/10.1097/OGX.0000000000000001.
Article
Google Scholar
Dunkel Schetter C, Tanner L. Anxiety, Depression and Stress in Pregnancy: Implications for Mothers, Children, Research, and Practice. Curr Opin Psychiatry. 2012;25(2):141–8. https://doi.org/10.1097/YCO.0b013e3283503680.
Article
Google Scholar
de Weerth C, Buitelaar JK. Physiological Stress Reactivity in Human Pregnancy–a Review. Neurosci Biobehav Rev. 2005;29(2):295–312. https://doi.org/10.1016/j.neubiorev.2004.10.005.
Article
Google Scholar
Dashraath P, Wong JLJ, Lim MXK, Lim LM, Li S, Biswas A, et al. Coronavirus Disease 2019 (COVID-19) Pandemic and Pregnancy. Am J Obstet Gynecol. 2020;222(6):521–31. https://doi.org/10.1016/j.ajog.2020.03.021.
Article
CAS
Google Scholar
Chiu NC, Chi H, Tai YL, Peng CC, Tseng CY, Chen CC, et al. Impact of Wearing Masks, Hand Hygiene, and Social Distancing on Influenza, Enterovirus, and All-Cause Pneumonia During the Coronavirus Pandemic: Retrospective National Epidemiological Surveillance Study. J Med Internet Res. 2020;22(8): e21257. https://doi.org/10.2196/21257.
Article
Google Scholar
Alimohamadi Y, Holakouie-Naieni K, Sepandi M, Taghdir M. Effect of Social Distancing on COVID-19 Incidence and Mortality in Iran Since February 20 to May 13, 2020: An Interrupted Time Series Analysis. Risk Manag Healthc Policy. 2020;13:1695–700. https://doi.org/10.2147/RMHP.S265079.
Article
Google Scholar
Sun B, Yeh J. Mild and Asymptomatic Covid-19 Infections: Implications for Maternal, Fetal, and Reproductive Health. Front Reprod Health. 2020;2:1. https://doi.org/10.3389/frph.2020.00001.
Article
Google Scholar
Yee J, Kim W, Han JM, Yoon HY, Lee N, Lee KE, et al. Clinical Manifestations and Perinatal Outcomes of Pregnant Women with COVID-19: A Systematic Review and Meta-Analysis. Scientific Reports. 2020;10(1):18126. https://doi.org/10.1038/s41598-020-75096-4.
Article
CAS
Google Scholar
Wastnedge EAN, Reynolds RM, van Boeckel SR, Stock SJ, Denison FC, Maybin JA, et al. Pregnancy and COVID-19. Physiol Rev. 2021;101(1):303–18. https://doi.org/10.1152/physrev.00024.2020.
Article
CAS
Google Scholar
Adhikari EH, Moreno W, Zofkie AC, MacDonald L, McIntire DD, Collins RRJ, et al. Pregnancy Outcomes Among Women With and Without Severe Acute Respiratory Syndrome Coronavirus 2 Infection. JAMA Netw Open. 2020;3(11):e2029256. https://doi.org/10.1001/jamanetworkopen.2020.29256.
Article
Google Scholar
Panahi L, Amiri M, Pouy S. Risks of Novel Coronavirus Disease (COVID-19) in Pregnancy; a Narrative Review. Arch Acad Emerg Med. 2020;8(1). https://doi.org/10.22037/aaem.v8i1.595.
Karavadra B, Stockl A, Prosser-Snelling E, Simpson P, Morris E. Women’s Perceptions of COVID-19 and Their Healthcare Experiences: A Qualitative Thematic Analysis of a National Survey of Pregnant Women in the United Kingdom. BMC Pregnancy and Childbirth. 2020;20(1):600. https://doi.org/10.1186/s12884-020-03283-2.
Article
CAS
Google Scholar
Tirachini A, Cats O. COVID-19 and Public Transportation: Current Assessment, Prospects, and Research Needs. J Public Transp. 2020;22(1). https://doi.org/10.5038/2375-0901.22.1.1.
Ahmad T, Khan M, Haroon, Musa TH, Nasir S, Hui J, et al. COVID-19: Zoonotic Aspects. Travel Med Infect Dis. 2020;36:101607. https://doi.org/10.1016/j.tmaid.2020.101607.
on behalf of COVID-19 Evidence and Recommendations Working Group, Zhou Q, Gao Y, Wang X, Liu R, Du P, et al. Nosocomial Infections among Patients with COVID-19, SARS and MERS: A Rapid Review and Meta-Analysis. Annals of Translational Medicine. 2020;8(10):629. https://doi.org/10.21037/atm-20-3324.
Ji H, Liu L, Huang T, Zhu Y. Nosocomial Infections in Psychiatric Hospitals during the COVID-19 Outbreak. Eur J Psychiatr. 2020;34(3):177–9. https://doi.org/10.1016/j.ejpsy.2020.04.001.
Article
Google Scholar
Rickman HM, Rampling T, Shaw K, Martinez-Garcia G, Hail L, Coen P, et al. Nosocomial Transmission of Coronavirus Disease 2019: A Retrospective Study of 66 Hospital-Acquired Cases in a London Teaching Hospital. Clinical Infectious Diseases. 2021;72(4):690–3. https://doi.org/10.1093/cid/ciaa816.
Article
CAS
Google Scholar
Wang X, Zhou Q, He Y, Liu L, Ma X, Wei X, et al. Nosocomial Outbreak of COVID-19 Pneumonia in Wuhan, China. Eur Respir J. 2020;55(6):2000544. https://doi.org/10.1183/13993003.00544-2020.
Article
CAS
Google Scholar
Klompas M. Coronavirus Disease 2019 (COVID-19): Protecting Hospitals From the Invisible. Ann Intern Med. 2020;172(9):619–20. https://doi.org/10.7326/M20-0751.
Article
Google Scholar
Van Praet JT, Claeys B, Coene AS, Floré K, Reynders M. Prevention of Nosocomial COVID-19: Another Challenge of the Pandemic. Infect Control Hosp Epidemiol. 2020;41(11):1355–6. https://doi.org/10.1017/ice.2020.166.
Article
CAS
Google Scholar
Nosratabadi M, Sarabi N, Masoudiyekta L. A Case Report of Vaginal Delivery at Home Due to Fear of Covid-19. Iran J Psychiatry. 2020. https://doi.org/10.18502/ijps.v15i4.4306.
Hossain N, Samuel M, Sandeep R, Imtiaz S, Zaheer S. Perceptions, Generalized Anxiety and Fears of Pregnant Women about Corona Virus Infection in the Heart of Pandemic. 2020. https://doi.org/10.21203/rs.3.rs-32235/v1.
Madjunkov M, Dviri M, Librach C. A Comprehensive Review of the Impact of COVID-19 on Human Reproductive Biology, Assisted Reproduction Care and Pregnancy: A Canadian Perspective. J Ovarian Res. 2020;13(1):140. https://doi.org/10.1186/s13048-020-00737-1.
Article
CAS
Google Scholar
Kotlyar AM, Grechukhina O, Chen A, Popkhadze S, Grimshaw A, Tal O, et al. Vertical Transmission of Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Am J Obstet Gynecol. 2021;224(1):35-53.e3. https://doi.org/10.1016/j.ajog.2020.07.049.
Article
CAS
Google Scholar
Vivanti AJ, Vauloup-Fellous C, Prevot S, Zupan V, Suffee C, Do Cao J, et al. Transplacental Transmission of SARS-CoV-2 Infection. Nat Commun. 2020;11(1):3572. https://doi.org/10.1038/s41467-020-17436-6.
Article
CAS
Google Scholar
Ashraf MA, Keshavarz P, Hosseinpour P, Erfani A, Roshanshad A, Pourdast A, et al. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Pregnancy and the Possibility of Vertical Transmission. J Reprod Infertility. 2020;21(3):157.
Google Scholar
Nowacka U, Kozlowski S, Januszewski M, Sierdzinski J, Jakimiuk A, Issat T. COVID-19 Pandemic-Related Anxiety in Pregnant Women. Int J Environ Res Public Health. 2021;18(14):1–10. https://doi.org/10.3390/ijerph18147221.
Article
CAS
Google Scholar
Wu D, Fang D, Wang R, Deng D, Liao S. Management of Pregnancy during the COVID-19 Pandemic. Glob Challenges. 2021;5(2):1–8. https://doi.org/10.1002/gch2.202000052.
Article
CAS
Google Scholar
Al-Jaroodi J, Mohamed N, Abukhousa E. Health 4.0. IEEE Access. 2020;8:211189–210. https://doi.org/10.1109/ACCESS.2020.3038858.
Article
Google Scholar
Li J, Carayon P. Health Care 4.0: A Vision for Smart and Connected Health Care. IISE Trans Healthc Syst Eng. 2021;1–10. https://doi.org/10.1080/24725579.2021.1884627.
Embracing Healthcare 4.0. https://www.siemens-healthineers.com/insights/news/embracing-healthcare-4-0.html. Accessed 30 Mar 2022.
Hathaliya JJ, Tanwar S, Tyagi S, Kumar N. Securing Electronics Healthcare Records in Healthcare 4.0 : A Biometric-Based Approach. Comput Electr Eng. 2019;76:398–410. https://doi.org/10.1016/j.compeleceng.2019.04.017.
Article
Google Scholar
Schmidt JV, McCartney PR. History and Development of Fetal Heart Assessment. J Obstet Gynecol Neonatal Nurs. 2000;29(3):295–305. https://doi.org/10.1111/j.1552-6909.2000.tb02051.x.
Article
CAS
Google Scholar
Alfirevic Z, Gyte GM, Cuthbert A, Devane D. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst Rev. 2019;2019(5). https://doi.org/10.1002/14651858.CD006066.pub3.
Smith VJ, Marshall A, Lie M, Bidmead E, Beckwith B, Van Oudgaarden E, et al. Implementation of a fetal ultrasound telemedicine service: women’s views and family costs. BMC Pregnancy Childbirth. 2021;21(1):1–8.
Article
Google Scholar
Mhajna M, Schwartz N, Levit-Rosen L, Warsof S, Lipschuetz M, Jakobs M, et al. Wireless, Remote Solution for Home Fetal and Maternal Heart Rate Monitoring. Am J Obstet Gynecol MFM. 2020;2(2):100101. https://doi.org/10.1016/j.ajogmf.2020.100101.
Article
Google Scholar
Al-Turjman F, Nawaz MH, Ulusar UD. Intelligence in the Internet of Medical Things era. Comput Commun. 2020;150:644–60. https://doi.org/10.1016/j.comcom.2019.12.030.
Article
Google Scholar
Cömert Z, Kocamaz A. A Study of Artificial Neural Network Training Algorithms for Classification of Cardiotocography Signals. Bitlis Eren Univ J Sci Technol. 2017;7(2):93–103. https://doi.org/10.17678/beuscitech.338085.
Marzbanrad F, Stroux L, Clifford GD. Cardiotocography and beyond: A Review of One-Dimensional Doppler Ultrasound Application in Fetal Monitoring. Physiol Meas. 2018;39(8):08TR01. https://doi.org/10.1088/1361-6579/aad4d1.
Article
Google Scholar
Kovács F, Horváth C, Balogh ÁT, Hosszú G. Fetal Phonocardiography—Past and Future Possibilities. Comput Methods Programs Biomed. 2011;104(1):19–25. https://doi.org/10.1016/j.cmpb.2010.10.006.
Article
Google Scholar
Várady P, Wildt L, Benyó Z, Hein A. An Advanced Method in Fetal Phonocardiography. Comput Methods Prog Biomed. 2003;71(3):283–96. https://doi.org/10.1016/S0169-2607(02)00111-6.
Article
Google Scholar
Maulik D, Nanda NC, Maulik D, Vilchez G. A Brief History of Fetal Echocardiography and Its Impact on the Management of Congenital Heart Disease. Echocardiography (Mount Kisco, NY). 2017;34(12):1760–7. https://doi.org/10.1111/echo.13713.
Article
Google Scholar
Lee MY, Won HS. Technique of Fetal Echocardiography. Obstet Gynecol Sci. 2013;56(4):217. https://doi.org/10.5468/ogs.2013.56.4.217.
Article
CAS
Google Scholar
Satomi G. Guidelines for Fetal Echocardiography: Guidelines for Fetal Echocardiography. Pediatr Int. 2015;57(1):1–21. https://doi.org/10.1111/ped.12467.
Article
Google Scholar
Peters MJ, Stinstra JG, Uzunbajakau S, Srinivasan N. Fetal Magnetocardiography. In: Lin JC, editor. Advances in Electromagnetic Fields in Living Systems. vol. 4. New York: Springer-Verlag; 2005. p. 1–40. https://doi.org/10.1007/0-387-24024-1_1.
Strasburger JF, Cheulkar B, Wakai RT. Magnetocardiography for Fetal Arrhythmias. Heart Rhythm Off J Heart Rhythm Soc. 2008;5(7):1073–6. https://doi.org/10.1016/j.hrthm.2008.02.035.
Article
Google Scholar
Quartero HWP, Stinstra JG, Golbach EGM, Meijboom EJ, Peters MJ. Clinical Implications of Fetal Magnetocardiography: Clinical Use of Fetal MCG. Ultrasound Obstet Gynecol. 2002;20(2):142–53. https://doi.org/10.1046/j.1469-0705.2002.00754.x.
Article
CAS
Google Scholar
Abdulhay EW, Oweis RJ, Alhaddad AM, Sublaban FN, Radwan MA, Almasaeed HM. Non-Invasive Fetal Heart Rate Monitoring Techniques: Review Article. Biomed Sci Eng. 2014;2:53–67.
Google Scholar
Kahankova R, Martinek R, Jaros R, Behbehani K, Matonia A, Jezewski M, et al. A Review of Signal Processing Techniques for Non-Invasive Fetal Electrocardiography. IEEE Rev Biomed Eng. 2020;13:51–73. https://doi.org/10.1109/RBME.2019.2938061.
Article
Google Scholar
Hamelmann P, Kolen A, Schmitt L, Vullings R, van Assen H, Mischi M, et al. Ultrasound Transducer Positioning Aid for Fetal Heart Rate Monitoring. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando: IEEE; 2016. p. 4105–4108. https://doi.org/10.1109/EMBC.2016.7591629.
Cohen WR, Hayes-Gill B. Influence of maternal body mass index on accuracy and reliability of external fetal monitoring techniques. Acta Obstet Gynecol Scand. 2014;93(6):590–5. https://doi.org/10.1111/aogs.12387.
Article
Google Scholar
Sameni. A Review of Fetal ECG Signal Processing Issues and Promising Directions. Open Pacing Electrophysiol Ther J. 2010. https://doi.org/10.2174/1876536X01003010004.
Okada DM, Chow AW, Bruce VT. Neonatal Scalp Abscess and Fetal Monitoring: Factors Associated with Infection. Am J Obstet Gynecol. 1977;129(2):185–9. https://doi.org/10.1016/0002-9378(77)90742-6.
Article
CAS
Google Scholar
Graatsma E, Miller J, Mulder E, Harman C, Baschat A, Visser G. Maternal Body Mass Index Does Not Affect Performance of Fetal Electrocardiography. Am J Perinatol. 2010;27(07):573–7. https://doi.org/10.1055/s-0030-1248945.
Article
Google Scholar
Barnova K, Martinek R, Jaros R, Kahankova R, Matonia A, Jezewski M, et al. A Novel Algorithm Based on Ensemble Empirical Mode Decomposition for Non-Invasive Fetal ECG Extraction. PLoS ONE. 2021;16(8):e0256154. https://doi.org/10.1371/journal.pone.0256154.
Article
CAS
Google Scholar
Jaros R, Martinek R, Kahankova R, Koziorek J. Novel Hybrid Extraction Systems for Fetal Heart Rate Variability Monitoring Based on Non-Invasive Fetal Electrocardiogram. IEEE Access Pract Innovations Open Solutions. 2019;7:131758–84. https://doi.org/10.1109/ACCESS.2019.2933717.
Article
Google Scholar
Barnova K, Martinek R, Jaros R, Kahankova R, Behbehani K, Snasel V. System for Adaptive Extraction of Non-Invasive Fetal Electrocardiogram. Appl Soft Comput. 2021;113:107940. https://doi.org/10.1016/j.asoc.2021.107940.
Article
Google Scholar
Gobillot S, Fontecave-Jallon J, Equy V, Rivet B, Gumery PY, Hoffmann P. Non-Invasive Fetal Monitoring Using Electrocardiography and Phonocardiography: A Preliminary Study. J Gynecol Obstet Hum Reprod. 2018;47(9):455–9. https://doi.org/10.1016/j.jogoh.2018.08.009.
Article
CAS
Google Scholar
Castillo E, Morales DP, García A, Parrilla L, Ruiz VU, Álvarez-Bermejo JA. A Clustering-Based Method for Single-Channel Fetal Heart Rate Monitoring. PLoS ONE. 2018;13(6):e0199308. https://doi.org/10.1371/journal.pone.0199308.
Article
CAS
Google Scholar
Gurve D, Krishnan S. Separation of Fetal-ECG From Single-Channel Abdominal ECG Using Activation Scaled Non-Negative Matrix Factorization. IEEE J Biomed Health Inform. 2020;24(3):669–80. https://doi.org/10.1109/JBHI.2019.2920356.
Article
Google Scholar
Da Poian G, Bernardini R, Rinaldo R. Separation and Analysis of Fetal-ECG Signals From Compressed Sensed Abdominal ECG Recordings. IEEE Trans Biomed Eng. 2016;63(6):1269–79. https://doi.org/10.1109/TBME.2015.2493726.
Article
Google Scholar
Signorini M, Lanzola G, Torti E, Fanelli A, Magenes G. Antepartum Fetal Monitoring through a Wearable System and a Mobile Application. Technologies. 2018;6(2):44. https://doi.org/10.3390/technologies6020044.
Article
Google Scholar
Corona-Figueroa A. A Portable Prototype for Diagnosing Fetal Arrhythmia. Inform Med Unlocked. 2019;17:100268. https://doi.org/10.1016/j.imu.2019.100268.
Article
Google Scholar
Yuan L, Yuan Y, Zhou Z, Bai Y, Wu S. A Fetal ECG Monitoring System Based on the Android Smartphone. Sensors. 2019;19(3):446. https://doi.org/10.3390/s19030446.
Article
Google Scholar
Rashkovska A, Avbelj V. Abdominal Fetal ECG Measured with Differential ECG Sensor. In: 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija: IEEE; 2017. p. 289–291. https://doi.org/10.23919/MIPRO.2017.7973436.
Theodoridou A. Current Methods of Non-Invasive Fetal Heart Rate Surveillance. Clinical and Experimental Obstetrics & Gynecology. 2020;47(4):459. https://doi.org/10.31083/j.ceog.2020.04.5422.
Kapaya H, Dimelow ER, Anumba D. Women’s Experience of Wearing a Portable Fetal-Electrocardiogram Device to Monitor Small-for-Gestational Age Fetus in Their Home Environment. Womens Health. 2018;14:174550651878562. https://doi.org/10.1177/1745506518785620.
Article
CAS
Google Scholar
GE Healthcare Systems. https://www.gehealthcare.com. Accessed 30 Mar 2022.
Mindchild. https://www.mindchild.com. Accessed 30 Mar 2022.
Sulas E, Urru M, Tumbarello R, Raffo L, Sameni R, Pani D. A Non-Invasive Multimodal Foetal ECG–Doppler Dataset for Antenatal Cardiology Research. Sci Data. 2021;8(1):30. https://doi.org/10.1038/s41597-021-00811-3.
Article
Google Scholar
Nemo Healthcare. https://nemohealthcare.com. Accessed 30 Mar 2022.
Vullings R, van Laar JOEH. Non-Invasive Fetal Electrocardiography for Intrapartum Cardiotocography. Front Pediatr. 2020;8:599049. https://doi.org/10.3389/fped.2020.599049.
Article
Google Scholar
Avalon beltless feotal monitoring solution. Philips. Available: https://www.philips.co.uk/healthcare/product/HC866488/avalon-beltless-feotal-monitoring-solution. Accessed 1 Jan 2022.
Martinek R, Kahankova R, Nazeran H, Konecny J, Jezewski J, Janku P, et al. Non-Invasive Fetal Monitoring: A Maternal Surface ECG Electrode Placement-Based Novel Approach for Optimization of Adaptive Filter Control Parameters Using the LMS and RLS Algorithms. Sensors. 2017;17(5):1154. https://doi.org/10.3390/s17051154.
Article
Google Scholar
Aggarwal G, Wei Y. Non-Invasive Fetal Electrocardiogram Monitoring Techniques: Potential and Future Research Opportunities in Smart Textiles. Signals. 2021;2(3):392–412.
Article
Google Scholar
Kubicek J, Fiedorova K, Vilimek D, Cerny M, Penhaker M, Janura M, et al. Recent Trends, Construction and Applications of Smart Textiles and Clothing for Monitoring of Health Activity: A Comprehensive Multidisciplinary Review. IEEE Rev Biomed Eng. 2020;1. https://doi.org/10.1109/RBME.2020.3043623.
Stoppa M, Chiolerio A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors. 2014;14(7):11957–92. https://doi.org/10.3390/s140711957.
Article
CAS
Google Scholar
Zarzoso V, Nandi AK. Noninvasive Fetal Electrocardiogram Extraction: Blind Separation versus Adaptive Noise Cancellation. IEEE Trans Biomed Eng. 2001;48(1):12–8. https://doi.org/10.1109/10.900244.
Article
CAS
Google Scholar
Martín-Clemente R, Camargo-Olivares JL, Hornillo-Mellado S, Elena M, Román I. Fast Technique for Noninvasive Fetal ECG Extraction. IEEE Trans Biomed Eng. 2011;58(2):227–30. https://doi.org/10.1109/TBME.2010.2059703.
Article
Google Scholar
Ghobadi Azbari P, Mohaqeqi S, Ghanbarzadeh Gashti N, Mikaili M. Introducing a Combined Approach of Empirical Mode Decomposition and PCA Methods for Maternal and Fetal ECG Signal Processing. J Matern-Fetal Neonatal Med. 2016;29(19):3104–9. https://doi.org/10.3109/14767058.2015.1114089.
Article
Google Scholar
Wu S, Shen Y, Zhou Z, Lin L, Zeng Y, Gao X. Research of Fetal ECG Extraction Using Wavelet Analysis and Adaptive Filtering. Comput Biol Med. 2013;43(10):1622–7. https://doi.org/10.1016/j.compbiomed.2013.07.028.
Article
Google Scholar
Assaleh K. Extraction of Fetal Electrocardiogram Using Adaptive Neuro-Fuzzy Inference Systems. IEEE Trans Biomed Eng. 2007;54(1):59–68. https://doi.org/10.1109/TBME.2006.883728.
Article
Google Scholar
Liu Sj, Liu Dl, Zhang Jq, Zeng Yj. Extraction of Fetal Electrocardiogram Using Recursive Least Squares and Normalized Least Mean Squares Algorithms. In: 2011 3rd International Conference on Advanced Computer Control. Harbin: IEEE; 2011. p. 333–336. https://doi.org/10.1109/ICACC.2011.6016426.
Alexander ST. Fast Transversal Filters. In: Adaptive Signal Processing. New York: Springer New York; 1986. p. 154–176. https://doi.org/10.1007/978-1-4612-4978-8_11.
Martinek R, Kahankova R, Jaros R, Barnova K, Matonia A, Jezewski M, et al. Non-Invasive Fetal Electrocardiogram Extraction Based on Novel Hybrid Method for Intrapartum ST Segment Analysis. IEEE Access Pract Innovations Open Solutions. 2021;9:28608–31. https://doi.org/10.1109/ACCESS.2021.3058733.
Article
Google Scholar
Martinek R, Barnova K, Jaros R, Kahankova R, Kupka T, Jezewski M, et al. Passive Fetal Monitoring by Advanced Signal Processing Methods in Fetal Phonocardiography. IEEE Access Pract Innovations Open Solutions. 2020;8:221942–62. https://doi.org/10.1109/ACCESS.2020.3043496.
Article
Google Scholar
Mhajna M, Sadeh B, Yagel S, Sohn C, Schwartz N, Warsof S, et al. A novel, cardiac-derived algorithm for uterine activity monitoring in a wearable remote device. Front Bioeng Biotechnol. 2022;10:1–19.
Article
Google Scholar
de Campos DA, Arulkumaran S. FIGO consensus guidelines on intrapartum fetal monitoring. Int J Gynecol Obstet. 2015;131(1):5–8. https://doi.org/10.1016/j.ijgo.2015.06.018.
Article
Google Scholar
Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012;13(2):281–305.
Google Scholar
Kennedy J, Eberhart R. Particle Swarm Optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. vol. 4. Perth: IEEE; 1995. p. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968.
Storn R, Price K. Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J Glob Optim. 1997;11(4):341–59. https://doi.org/10.1023/A:1008202821328.
Article
Google Scholar
Mirjalili S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowl-Based Syst. 2015;89:228–49. https://doi.org/10.1016/j.knosys.2015.07.006.
Article
Google Scholar
Nasiri M. Fetal Electrocardiogram Signal Extraction by ANFIS Trained with PSO Method. Int J Electr Comput Eng (IJECE). 2012;2(2):247–260. https://doi.org/10.11591/ijece.v2i2.231.
Elmansouri K, Latif R, Maoulainine F. Improvement of Fetal Electrocardiogram Extraction by Application of Fuzzy Adaptive Resonance Theory to Adaptive Neural Fuzzy System. Int J Innov Appl Stud. 2014;9(1):95.
Google Scholar
Panigrahy D, Rakshit M, Sahu PK. An Efficient Method for Fetal ECG Extraction from Single Channel Abdominal ECG. In: 2015 International Conference on Industrial Instrumentation and Control (ICIC). Pune: IEEE; 2015. p. 1083–1088. https://doi.org/10.1109/IIC.2015.7150908.
Kockanat S, Kockanat S. Analysis and Extraction of Fetal Electrocardiogram Signal with Adaptive Filtering Using Differential Evolution Algorithm. Cumhuriyet Sci J. 2018;294–302. https://doi.org/10.17776/csj.407424.
Panigrahy D, Sahu PK. Extraction of Fetal ECG Signal by an Improved Method Using Extended Kalman Smoother Framework from Single Channel Abdominal ECG Signal. Australas Phys Eng Sci Med. 2017;40(1):191–207. https://doi.org/10.1007/s13246-017-0527-5.
Article
CAS
Google Scholar
Jibia MS, Jibia AU. Fetal Electrocardiogram Extraction Using Moth Flame Optimization (MFO)-Based Adaptive Filter. Adv Sci Technol Eng Syst J. 2021;6(2):303–312. https://doi.org/10.25046/aj060235.
Silwattananusarn T, Kanarkard W, Tuamsuk K. Enhanced Classification Accuracy for Cardiotocogram Data with Ensemble Feature Selection and Classifier Ensemble. J Comput Commun. 2016;04(04):20–35. https://doi.org/10.4236/jcc.2016.44003.
Article
Google Scholar
Subasi A, Kadasa B, Kremic E. Classification of the Cardiotocogram Data for Anticipation of Fetal Risks Using Bagging Ensemble Classifier. Procedia Comput Sci. 2020;168:34–9. https://doi.org/10.1016/j.procs.2020.02.248.
Article
Google Scholar
Krupa N, Ma M, Zahedi E, Ahmed S, Hassan FM. Antepartum Fetal Heart Rate Feature Extraction and Classification Using Empirical Mode Decomposition and Support Vector Machine. Biomed Eng Online. 2011;10(1):6. https://doi.org/10.1186/1475-925X-10-6.
Article
Google Scholar
Carter EB, Tuuli MG, Caughey AB, Odibo AO, Macones GA, Cahill AG. Number of Prenatal Visits and Pregnancy Outcomes in Low-Risk Women. J Perinatol. 2016;36(3):178–81. https://doi.org/10.1038/jp.2015.183.
Article
CAS
Google Scholar
Laranjo L, Dunn AG, Tong HL, Kocaballi AB, Chen J, Bashir R, et al. Conversational Agents in Healthcare: A Systematic Review. J Am Med Inform Assoc. 2018;25(9):1248–58. https://doi.org/10.1093/jamia/ocy072.
Article
Google Scholar
Mutabazi E, Ni J, Tang G, Cao W. A Review on Medical Textual Question Answering Systems Based on Deep Learning Approaches. Appl Sci. 2021;11(12):5456. https://doi.org/10.3390/app11125456.
Article
CAS
Google Scholar
Abdallah A, Kasem M, Hamada MA, Sdeek S. Automated Question-Answer Medical Model Based on Deep Learning Technology. In: Proceedings of the 6th International Conference on Engineering & MIS 2020. Almaty Kazakhstan: ACM; 2020. p. 1–8. https://doi.org/10.1145/3410352.3410744.
Nadarzynski T, Miles O, Cowie A, Ridge D. Acceptability of Artificial Intelligence (AI)-Led Chatbot Services in Healthcare: A Mixed-Methods Study. Digital Health. 2019;5:205520761987180. https://doi.org/10.1177/2055207619871808.
Article
Google Scholar
Adamopoulou E, Moussiades L. Chatbots: History, Technology, and Applications. Mach Learn Appl. 2020;2:100006. https://doi.org/10.1016/j.mlwa.2020.100006.
Article
Google Scholar
Philip P, Micoulaud-Franchi JA, Sagaspe P, Sevin ED, Olive J, Bioulac S, et al. Virtual Human as a New Diagnostic Tool, a Proof of Concept Study in the Field of Major Depressive Disorders. Sci Rep. 2017;7(1):42656. https://doi.org/10.1038/srep42656.
Article
CAS
Google Scholar
Lucas GM, Rizzo A, Gratch J, Scherer S, Stratou G, Boberg J, et al. Reporting Mental Health Symptoms: Breaking Down Barriers to Care with Virtual Human Interviewers. Front Robot AI. 2017;4:51. https://doi.org/10.3389/frobt.2017.00051.
Article
Google Scholar
Levin E, Levin A. Evaluation of Spoken Dialogue Technology for Real-Time Health Data Collection. J Med Internet Res. 2006;8(4):e30. https://doi.org/10.2196/jmir.8.4.e30.
Article
Google Scholar
Giorgino T, Azzini I, Rognoni C, Quaglini S, Stefanelli M, Gretter R, et al. Automated Spoken Dialogue System for Hypertensive Patient Home Management. Int J Med Inform. 2005;74(2–4):159–67. https://doi.org/10.1016/j.ijmedinf.2004.04.026.
Article
Google Scholar
Azzini I, Falavigna D, Giorgino T, Gretter R, Quaglini S, Rognoni C, et al. Automated spoken dialog system for home care and data acquisition from chronic patients. In: The New Navigators: From Professionals to Patients. Amsterdam: IOS Press; 2003. p. 146–51.
Black LA, McTear M, Black N, Harper R, Lemon M. Appraisal of a Conversational Artefact and Its Utility in Remote Patient Monitoring. In: 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05). Dublin: IEEE; 2005. p. 506–508. https://doi.org/10.1109/CBMS.2005.33.
Harper R, Nicholl P, McTear M, Wallace J, Black LA, Kearney P. Automated Phone Capture of Diabetes Patients Readings with Consultant Monitoring via the Web. In: 15th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (Ecbs 2008). Belfast: IEEE; 2008. p. 219–226. https://doi.org/10.1109/ECBS.2008.31.
Griol D, Carbó J, Molina JM. An Automatic Dialog Simulation Technique to Develop and Evaluate Interactive Conversational Agents. Appl Artif Intell. 2013;27(9):759–80. https://doi.org/10.1080/08839514.2013.835230.
Article
Google Scholar
Battineni G, Chintalapudi N, Amenta F. AI Chatbot Design during an Epidemic like the Novel Coronavirus. Healthcare. 2020;8(2):154. https://doi.org/10.3390/healthcare8020154.
Article
Google Scholar
Rodsawang C, Thongkliang P, Intawong T, Sonong A, Thitiwatthana Y, Chottanapund S. Designing a competent chatbot to counter the Covid-19 pandemic and empower risk communication in an emergency response system. OSIR J. 2020;13(2):71–7.
Google Scholar
Dennis AR, Kim A, Rahimi M, Ayabakan S. User Reactions to COVID-19 Screening Chatbots from Reputable Providers. J Am Med Inform Assoc. 2020;27(11):1727–31. https://doi.org/10.1093/jamia/ocaa167.
Article
Google Scholar
Walwema J, The WHO. Health Alert: Communicating a Global Pandemic with WhatsApp. J Bus Tech Commun. 2021;35(1):35–40. https://doi.org/10.1177/1050651920958507.
Article
Google Scholar
Almalki M, Azeez F. Health Chatbots for Fighting COVID-19: A Scoping Review. Acta Inform Med. 2020;28(4):241. https://doi.org/10.5455/aim.2020.28.241-247.
Article
Google Scholar
Chung K, Cho HY, Park JY. A Chatbot for Perinatal Women’s and Partners’ Obstetric and Mental Health Care: Development and Usability Evaluation Study. JMIR Med Inform. 2021;9(3):e18607. https://doi.org/10.2196/18607.
Article
Google Scholar
Vaira L, Bochicchio MA, Conte M, Casaluci FM, Melpignano A. MamaBot: A System Based on ML and NLP for Supporting Women and Families during Pregnancy. In: Proceedings of the 22nd International Database Engineering & Applications Symposium on - IDEAS 2018. Villa San Giovanni: ACM Press; 2018. p. 273–277. https://doi.org/10.1145/3216122.3216173.
Marko KI, Ganju N, Krapf JM, Gaba ND, Brown JA, Benham JJ, et al. A Mobile Prenatal Care App to Reduce In-Person Visits: Prospective Controlled Trial. JMIR mHealth uHealth. 2019;7(5):e10520. https://doi.org/10.2196/10520.
Article
Google Scholar
Lavariega JC, Córdova GA, Gómez LG, Avila A. Monitoring and Assisting Maternity-Infant Care in Rural Areas (Mamicare). In: E-Health and Telemedicine: Concepts, Methodologies, Tools, and Applications. Pennsylvania: IGI Global; 2016. p. 347–59.
Razaque A, Amsaad F, Jaro Khan M, Hariri S, Chen S, Siting C, et al. Survey: Cybersecurity Vulnerabilities, Attacks and Solutions in the Medical Domain. IEEE Access Pract Innovations Open Solutions. 2019;7:168774–97. https://doi.org/10.1109/ACCESS.2019.2950849.
Article
Google Scholar