Kołodziejczyk-Nowotarska A, Renata Bokiniec R, Seliga-Siwecka J. Monitored supplementation of vitamin D in PTs: a randomized controlled trial. Nutrients. 2021;13:3442. https://doi.org/10.3390/nu13103442.
Article
CAS
Google Scholar
Kheiri B, Abdalla A, Osman M, Ahmed S, Hassan M, Bachuwa G. Vitamin D deficiency and risk of cardiovascular diseases: a narrative review. Clinical Hyperten. 2018;24:9. https://doi.org/10.1186/s40885-018-0094-4.
Article
Google Scholar
Eman M. Alissa, Wafa a Alnahdi, Nabil Alama, Gordon a ferns insulin resistance in Saudi postmenopausal women with and without metabolic syndrome and its association with vitamin D deficiency. J Clin Transl Endocrinol. 2014;2:42–7. https://doi.org/10.1016/j.jcte.2014.09.001.
Article
Google Scholar
Douros K, Boutopoulou B, Fouzas S, Loukou I. Asthma and allergy "epidemic" and the role of vitamin D deficiency. Adv Exp Med Biol. 2017;996:169–83. https://doi.org/10.1007/978-3-319-56017-5_14.
Article
CAS
Google Scholar
Melguizo-Rodríguez RI-ML, Ruiz C. Víctor J Costela-Ruiz vitamin D and autoinmune diseases. Life Sci. 2019;233:116744. https://doi.org/10.1016/j.lfs.2019.116744.
Article
CAS
Google Scholar
Goyal H, Abhilash Perisetti M, Rahman R, Levin A, Lippi G. Vitamin D and gastrointestinal cancers: a narrative review. Dig Dis Sci. 2019;64:1098. https://doi.org/10.1007/s10620-018-5400-1.
Article
CAS
Google Scholar
Adams J, Hewson M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab. 2008;4:80–90. https://doi.org/10.1038/ncpendmet0716.
Article
CAS
Google Scholar
Tayel S, Soliman S, Elsayed H. Vitamin D deficiency and vitamin D receptor variants in mother and their neonates are risk factors for neonatal sepsis. Steroids. 2018;134:37–42. https://doi.org/10.1016/j.steroids.2018.03.003.
Article
CAS
Google Scholar
Quaraishi S, De Pascale G, Needleman JS, Nakazawa H, Kaneki M, Bajwa EK, et al. Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsis: a randomized, placebo-controlled trial. Crit Care Med. 2015;43:1928–37. https://doi.org/10.1097/CCM.0000000000001148.
Article
CAS
Google Scholar
Clancy N, Onwuneme C, Carrol A, McCarthy R, McKenna MJ, MurphyN. Vitamin D and neonatal immune function. J Matern Fetal Neonatal Med. 2013;26:639–46. https://doi.org/10.3109/14767058.2012.746304.
Article
CAS
Google Scholar
Meng N, Qianqian Z, Jiuru Z, Qianwen S, Dongting Y, Tao W, et al. Relationship between maternal vitamin D status in the first trimester and neonatal outcomes: a retrospective single center study. BMC Pediatr. 2021;21:330. https://doi.org/10.1186/s12887-021-02730-z.
Article
CAS
Google Scholar
Ch KB. Vitamin d supplementation in the ICU patient. Vitamin D supplementation in the ICU patient. Curr Opin Clin Nutr Metab Care. 2015;18:187. https://doi.org/10.1097/MCO.0000000000000147.
Article
CAS
Google Scholar
Bansal S, Kaur A, Rai S, Kaur G, Goyal G, Singh J, et al. Correlation of vitamin D deficiency with predictors of mortality in critically ill children at a tertiary Care Centre in North India-a Prospective. Observational Study J Pediatr Intensive Care. 2020;11:54–61. https://doi.org/10.1055/s-0040-1719171.
Article
Google Scholar
He M, Cao T, Wang J, Wang C, Wang Z, Abdelrahim MEA. Vitamin D deficiency relation to sepsis, paediatric risk of mortality III score, need for ventilation support, length of hospital stay, and duration of mechanical ventilation in critically ill children: a meta-analysis. Int J Clin Pract. 2021;75:e13908. https://doi.org/10.1111/ijcp.13908.
Article
CAS
Google Scholar
Amrein K, Litonjua AA, Moromizato T, Quraishi SA, Gibbons FK, Pieber TR, et al. Increases in pre-hospitalization serum 25(OH) D concentrations are associated with improved 30-day mortality after hospital admission: a cohort study. Clin Nutr. 2016;35:514. https://doi.org/10.1016/j.clnu.2015.03.020.
Article
CAS
Google Scholar
Dall`Agnola A, Beghini L. Post-discharge supplementation of vitamins and minerals for preterm neonates. Early Hum Dev. 2009;85:S27–9. https://doi.org/10.1016/j.earlhumdev.2009.08.008.
Article
CAS
Google Scholar
Martínez Suárez V, Moreno Villares JM, Dalmau Serra J, de Nutrición C, de la Asociación Española de Pediatría. Recommended intake of calcium and vitamin D: positioning of the nutrition committee of the AEP. An Pediatr. 2012;77(57):e1–8. https://doi.org/10.1016/j.anpedi.2011.11.024.
Article
Google Scholar
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911. https://doi.org/10.1210/jc.2011-0385.
Article
CAS
Google Scholar
Wagner CL, Greer FR, American Academy of Pediatrics Section on Breastfeeding; American Academy of Pediatrics Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122:1142. https://doi.org/10.1542/peds.2008-1862.
Article
Google Scholar
Pérez-Castillo IM, Rivero-Blanco T, León-Ríos XA, Expósito-Ruiz M, López-Criado MS, Aguilar-Cordero MJ. Associations of vitamin D deficiency, parathyroid hormone, calcium, and phosphorus with perinatal adverse outcomes. A Prospective Cohort Stud Nutrients. 2020;12:3279. https://doi.org/10.3390/nu12113279.
Article
CAS
Google Scholar
Sachan A, Gupta R, Das V, Agarwal A, Awasthin P, Bhatia V. High prevalence of vitamin D deficiency among pregnant women and their newborns in Nothern India. Am J Clin Nutr. 2005;81:1060–4. https://doi.org/10.1093/ajcn/81.5.1060.
Article
CAS
Google Scholar
Vanlaere I, Libert C. Matrix metalloproteinases as drug targets in infections caused by gram-negative bacteria and in septic shock. Clin Microbiol Rev. 2009;22:224–39. https://doi.org/10.1128/CMR.00047-08.
Article
CAS
Google Scholar
Cena J, Lalu MM, Rosenfelt C, Schulz R. Endothelial dependence of matrix metalloproteinase-mediated vascular hyporeactivity caused by lipopolysaccharide. Eur J Pharmacol. 2008;582:116. https://doi.org/10.1016/j.ejphar.2007.12.019.
Article
CAS
Google Scholar
Rosendahl J, Holmlund-Suila E, Helve O, Viljakainen H, Hauta-Alus H, Valkama S, et al. 25-hydroxyvitamin D correlates with inflammatory markers in cord blood of healthy newborns. Pediatr Res. 2017;81:731–5. https://doi.org/10.1038/pr.2017.9.
Article
CAS
Google Scholar
Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723. https://doi.org/10.1164/ajrccm.163.7.2011060.
Article
CAS
Google Scholar
Stocker M, van Herk W, El Helou S, Dutta S, Schuerman FABA, van den Tooren-de Groot RK, et al. C-reactive protein, Procalcitonin, and white blood count to rule out neonatal early-onset Sepsis within 36 hours: a secondary analysis of the neonatal Procalcitonin intervention study. Clin Infect Dis. 2021;15(73):e383–90. https://doi.org/10.1093/cid/ciaa876.
Article
CAS
Google Scholar
Tamblyn J, Pilarski N, Markland A, Marson EJ, Deall A, Hewison M, et al. Vitamin D and miscarriage: a systematic review and meta-analysis. Fetil Steril. 2022;118:111–22. https://doi.org/10.1016/j.fertnstert.2022.04.17.
Article
CAS
Google Scholar
Andrews RE, Coe KL. Clinical presentation and multifactorial pathogenesis of necrotizing Enterocolitis in the preterm infant. Adv Neonatal Care. 2021;21:349–55. https://doi.org/10.1097/ANC.0000000000000880.
Article
Google Scholar
Agwu A, Neptune A, Voss C, Yenia B, Rustein R. Parathyroid hormone as a functional indicator of vitamin D sufficiency in children. JAMA Pediatr. 2014;168:383–5. https://doi.org/10.1001/jamapediatrics.2013.5379.
Article
Google Scholar
Joung KE, Marter LV, McElrath TF, Michael Z, Tabatabai P, Litonjua AA, et al. Vitamin D and bronchopulmonary dysplasia in preterm infants. J Perinatol. 2016;36:878–82.
Article
CAS
Google Scholar
Bozkaya A, Yurttutan S, Özkars MY, Doğaner A. Respiratory problems in preterm infants with pulmonary hemorrhage. J Matern Fetal Neonatal Med. 2021;12:1–6. https://doi.org/10.1080/14767058.2021.1951207.
Article
CAS
Google Scholar
BarnetteBW SBT, Armenta RF, Wynn JL, Richardson A, Bradley J, et al. Contribution of concurrent comorbidities to Sepsis-related mortality in preterm infants ≤32 weeks of gestation at an academic neonatal intensive care network. Am J Perinatol. 2021:21. https://doi.org/10.1055/a-1675-2899.
Starr R, De Jesus O, Shah SD, Borger J. Periventricular and intraventricular Hemorrhage.2021 15. In: StatPearls [internet]. Treasure Island (FL): StatPearls Publishing; 2022.
Google Scholar
Amrein K, Scherkl M, Hoffmann M, Neuwersch-Sommeregger S, Köstenberger M, Berisha A, et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020;74:1498. https://doi.org/10.1038/s41430-020-0558-y.
Article
CAS
Google Scholar
Workneh Bitew Z, Worku T, Alemu A. Effects of vitamin D on neonatal sepsis: a systematic review and meta-analysis. Food Sci Nutr. 2020;9:375–88. https://doi.org/10.1002/fsn3.2003.
Article
Google Scholar
McDonell SL, Baggerly KA, Baggerly CA, Aliano JL, French CB, Baggerly LL. Maternal 25 OHD concentrations >40 ng/mL associated with 60% lower preterm birth risk among general obstetrical patients at an urban medical center. PLoS One. 2017;12:e0180483. https://doi.org/10.1371/journal.pone.0180483.
Article
CAS
Google Scholar
Martinez Suarez V, Dalmau SJ. Hipovitaminosis D: ¿Una epidemia real? Pediatr Integr. 2020;XXIV:351–5.
Google Scholar
Hollis BW. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J Nutr. 2005;135:317–22. https://doi.org/10.1093/jn/135.2.317.
Article
CAS
Google Scholar
Agarwal A. Kovilam, Agrawal DK, vitamin D and its impact on maternal-fetal outcomes in pregnancy: a critical review. Crit Rev Food Sci Nutr. 2018;58:755–69. https://doi.org/10.1080/10408398.2016.1220915.
Article
CAS
Google Scholar
Christoph P, Challande P, Raio L, Survek D. High prevalence of severevitamin D deficiency during the first trimester in pregnant women in Switzerland and its potential contributions to adverse outcomes in the pregnancy. Swiss Med Wkly. 2020;28(150):w20238. https://doi.org/10.4414/smw.2020.20238.
Article
Google Scholar
Specker B. Vitamin D requirements during pregnancy. Am J Clin Nutr. 2004;80:1740S. https://doi.org/10.1093/ajcn/80.6.1740S.
Article
CAS
Google Scholar
Bi WG, Nuyt AM, Weiler H, Leduc L, Santamaria C, Wei SQ. Association between vitamin D supplementation during pregnancy and offspring growth, morbidity, and mortality: a systematic review and Meta-analysis. JAMA Pediatr. 2018;172:635–45. https://doi.org/10.1001/jamapediatrics.2018.0302.
Article
Google Scholar
Sotunde OF, Laliberte A, Weiler HA. Maternal risk factors and newborn infant vitamin D status: a scoping literature review. Nutr Res. 2019;63:1–20. https://doi.org/10.1016/j.nutres.2018.11.011.
Article
CAS
Google Scholar
Cariolou M, Cupp M, Evangelou E, Tzoulaki I, Berlanga-Taylo J. Importance of vitamin D in acute and critically ill children with subgroup analyses of sepsis and respiratory tract infections: a systematic review and meta-analysis. BMJ Open. 2019;9(5):e027666. https://doi.org/10.1136/bmjopen-2018-027666.
Article
Google Scholar
Mao X, JieQiu LZ, JunjieXu JY, Yang Y, et al. Vitamin D and IL-10 deficiency in preterm neonates with bronchopulmonary dysplasia. Front Pediatr. 2018;6:246. https://doi.org/10.3389/fped.2018.00246.
Article
Google Scholar
Cetinkaya M, Cekmez F, Erener-Ercan T, Buyukkale G, Demirhan A, Aydemir G, et al. Maternal/neonatal vitamin D deficiency: a risk factor for bronchopulmonary dysplasia in preterm? J Perinatol. 2015;35:813–7. https://doi.org/10.1038/jp.2015.88.
Article
CAS
Google Scholar
Gäddnäs FP, Sutinen MM, Koskela M, Tervahartiala T, Sorsa T, Salo TA, et al. Matrix-metalloproteinase-2, −8 and −9 in serum and skin blister fluid in patients with severe sepsis. Crit Care. 2010;14:R49. https://doi.org/10.1186/cc8938.
Article
Google Scholar
Jones T, Reilly J, Anderson B, Miano T, Dunn T, Weisman A, et al. Elevated plasma levels of matrix metalloproteinase-3 and tissue inhibitor of matrix metalloproteinases-1 associate with organ dysfunction and mortality in sepsis. Shock. 2022;57:41–7. https://doi.org/10.1097/SHK.0000000000001833.
Article
CAS
Google Scholar
Izban MG, Nowicki BJ, Nowicki S. 1,25 dihydroxy vitamin D3 promotes a sustained LPS induced NF-kB dependent expression of CD55 in human monocytic THP 1 cells. PLoS One. 2012;7:e49318. https://doi.org/10.1371/journal.pone.0049318.
Article
CAS
Google Scholar
Rosendahl J, Homlund-Suila E, Helve O, Viljakainen H, Hauta-aulus H, Valkama S, et al. 25-hydroxyvitamin D correlates with inflammatory markers in cord blood of healthy newborns. Pediatr Res. 2017;81(5):731. https://doi.org/10.1038/pr.2017.9.
Article
CAS
Google Scholar
EL Hassani S, DJC B, Niemark HJ, Mann S, de Boode WP, Cosey V, et al. Risk factors for late onset sepsis in preterm infants: a multicenter case-control study. Neonatology. 2019;116:42–51. https://doi.org/10.1159/000497781.
Article
Google Scholar
Fort P, Salas AA, Nicola T, Craig CM, Carlo WA, Ambalavanan N. A comparison of 3 vitamin D dosing regimens in extremely preterm infants: a randomized controlled trial. J Pediatr. 2016;174:1432. https://doi.org/10.1016/j.jpeds.2016.03.028.
Article
CAS
Google Scholar
Cho SY, Park H-K, Lee HJ. Efficacy and safety of early supplementation with 800 IU of vitamin D in very preterm infants followed by underlying levels of vitamin D at birth. Ital J Pediatr. 2017;43:45. https://doi.org/10.1186/s13052-017-0361-0.
Article
CAS
Google Scholar