Nesheim M, Yaktine AL. Seafood Chioces Balancing Benefits and Risks. Washington: The National Academies of Press; 2007.
Google Scholar
Brenna JT, Lapillonne A. Background paper on fat and fatty acid requirements during pregnancy and lactation. Ann Nutr Metab. 2009;55(1–3):97–122.
Article
CAS
PubMed
Google Scholar
Emken EA, Adlof RO, Gulley RM. Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta. 1994;1213(3):277–88.
Article
CAS
PubMed
Google Scholar
Burdge GC. Metabolism of alpha-linolenic acid in humans. Prostaglandins Leukot Essent Fat Acids. 2006;75(3):161–8.
Article
CAS
Google Scholar
Carlson SE, Colombo J, Gajewski BJ, et al. DHA supplementation and pregnancy outcomes. Am J Clin Nutr. 2013;97(4):808–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parra MS, Schnaas L, Meydani M, Perroni E, Martinez S, Romieu I. Erythrocyte cell membrane phospholipid levels compared against reported dietary intakes of polyunsaturated fatty acids in pregnant Mexican women. Public Health Nutr. 2002;5(6a):931–7.
Article
PubMed
Google Scholar
Yuhas R, Pramuk K, Lien EL. Human milk fatty acid composition from nine countries varies most in DHA. Lipids. 2006;41(9):851–8.
Article
CAS
PubMed
Google Scholar
Gustafson KM, Carlson SE, Colombo J, et al. Effects of docosahexaenoic acid supplementation during pregnancy on fetal heart rate and variability: a randomized clinical trial. Prostaglandins Leukot Essent Fat Acids. 2013;88(5):331–8.
Article
CAS
Google Scholar
Smuts CM, Huang M, Mundy D, Plasse T, Major S, Carlson SE. A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstet Gynecol. 2003;101(3):469–79.
CAS
PubMed
Google Scholar
Lakin V, Haggarty P, Abramovich DR, et al. Dietary intake and tissue concentration of fatty acids in omnivore, vegetarian and diabetic pregnancy. Prostaglandins Leukot Essent Fat Acids. 1998;59(3):209–20.
Article
CAS
Google Scholar
Otto SJ, van Houwelingen AC, Badart-Smook A, Hornstra G. Changes in the maternal essential fatty acid profile during early pregnancy and the relation of the profile to diet. Am J Clin Nutr. 2001;73(2):302–7.
CAS
PubMed
Google Scholar
Kuipers RS, Luxwolda MF, Sango WS, Kwesigabo G, Dijck-Brouwer DA, Muskiet FA. Postdelivery changes in maternal and infant erythrocyte fatty acids in 3 populations differing in fresh water fish intakes. Prostaglandins Leukot Essent Fat Acids. 2011;85(6):387–97.
Article
CAS
Google Scholar
March of Dimes PMNCH. Save the Children, WHO. In: Howson CP, Kinney MV, Lawn JE, editors. Born Too Soon: The Global Action Report on Preterm Birth. Geneva: World Health Organization; 2012.
Google Scholar
Harper M. 454: Low maternal omega-3 levels prior to 22 weeks’ gestation are associated with preterm delivery and low fish intake. Am J Obstet Gynecol. 2009;201(6, Supplement):S172.
Article
Google Scholar
Valentine CJ, Morrow G, Fernandez S, et al. Docosahexaenoic Acid and Amino Acid Contents in Pasteurized Donor Milk are Low for Preterm Infants. J Pediatr. 2010;157(6):906–10.
Article
CAS
PubMed
Google Scholar
Valentine CJ, Morrow G, Pennell M, et al. Randomized controlled trial of docosahexaenoic acid supplementation in midwestern U.S. human milk donors. Breastfeed Med. 2013;8(1):86–91.
Article
PubMed
PubMed Central
Google Scholar
Helland IB, Saarem K, Saugstad OD, Drevon CA. Fatty acid composition in maternal milk and plasma during supplementation with cod liver oil. Eur J Clin Nutr. 1998;52(11):839–45.
Article
CAS
PubMed
Google Scholar
Connor C, McGinness M, Mammen J, et al. Axillary reverse mapping: a prospective study in women with clinically node negative and node positive breast cancer. Ann Surg Oncol. 2013;20(10):3303–7.
Article
PubMed
Google Scholar
Valentine CJ. Maternal dietary DHA supplementation to improve inflammatory outcomes in the preterm infant. Adv Nutr. 2012;3(3):370–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kromhout D, de Goede J. Update on cardiometabolic health effects of omega-3 fatty acids. Curr Opin Lipidol. 2014;25(1):85–90.
Article
CAS
PubMed
Google Scholar
Harris WS, Dayspring TD, Moran TJ. Omega-3 fatty acids and cardiovascular disease: new developments and applications. Postgrad Med. 2013;125(6):100–13.
Article
PubMed
Google Scholar
Jiang W, Zhu Z, McGinley JN, El Bayoumy K, Manni A, Thompson HJ. Identification of a molecular signature underlying inhibition of mammary carcinoma growth by dietary N-3 fatty acids. Cancer Res. 2012;72(15):3795–806.
Article
CAS
PubMed
Google Scholar
MacLennan MB, Clarke SE, Perez K, et al. Mammary tumor development is directly inhibited by lifelong n-3 polyunsaturated fatty acids. J Nutr Biochem. 2013;24(1):388–95.
Article
CAS
PubMed
Google Scholar
Bougnoux P, Hajjaji N, Maheo K, Couet C, Chevalier S. Fatty acids and breast cancer: sensitization to treatments and prevention of metastatic re-growth. Prog Lipid Res. 2010;49(1):76–86.
Article
CAS
PubMed
Google Scholar
Lopez LB, Kritz-Silverstein D, Barrett CE. High dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: the Rancho Bernardo study. J Nutr Health Aging. 2011;15(1):25–31.
Article
CAS
PubMed
Google Scholar
Zhao Y, Calon F, Julien C, et al. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PLoS One. 2011;6(1):e15816.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yurko-Mauro K, McCarthy D, Rom D, et al. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 2010;6(6):456–64.
Article
CAS
PubMed
Google Scholar
Hjorth E, Zhu M, Toro VC, et al. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-beta42 by human microglia and decrease inflammatory markers. J Alzheimers Dis. 2013;35(4):697–713.
PubMed
Google Scholar
Calder PC. n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc Nutr Soc. 2013;72(3):326–36.
Article
CAS
PubMed
Google Scholar
Mas E, Croft KD, Zahra P, Barden A, Mori TA. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem. 2012;58(10):1476–84.
Article
CAS
PubMed
Google Scholar
Ji RR, Xu ZZ, Strichartz G, Serhan CN. Emerging roles of resolvins in the resolution of inflammation and pain. Trends Neurosci. 2011;34(11):599–609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong SH, Belayev L, Khoutorova L, Obenaus A, Bazan NG. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J Neurol Sci. 2014;338(1–2):135–41.
Article
CAS
PubMed
Google Scholar
Borre YE, Panagaki T, Koelink PJ, et al. Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression. Neuropharmacology. 2014;79:738–49.
Article
CAS
PubMed
Google Scholar
Colombo J, Carlson SE, Cheatham CL, et al. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am J Clin Nutr. 2013;98(2):403–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willatts P, Forsyth S, Agostoni C, Casaer P, Riva E, Boehm G. Effects of long-chain PUFA supplementation in infant formula on cognitive function in later childhood. Am J Clin Nutr. 2013;98(2):536s–42.
Article
CAS
PubMed
Google Scholar
Jacobson JL, Jacobson SW, Muckle G, Kaplan-Estrin M, Ayotte P, Dewailly E. Beneficial effects of a polyunsaturated fatty acid on infant development: evidence from the inuit of arctic Quebec. J Pediatr. 2008;152(3):356–64.
Article
CAS
PubMed
Google Scholar
Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003;111(1):e39–44.
Article
PubMed
Google Scholar
Birch EE, Khoury JC, Berseth CL, et al. The impact of early nutrition on incidence of allergic manifestations and common respiratory illnesses in children. J Pediatr. 2010;156(6):902–6. 906.e901.
Article
PubMed
Google Scholar
Miyake Y, Tanaka K, Okubo H, Sasaki S, Arakawa M. Maternal fat intake during pregnancy and wheeze and eczema in Japanese infants: the Kyushu Okinawa Maternal and Child Health Study. Ann Epidemiol. 2013;23(11):674–80.
Article
PubMed
Google Scholar
Montes R, Chisaguano AM, Castellote AI, Morales E, Sunyer J, Lopez-Sabater MC. Fatty-acid composition of maternal and umbilical cord plasma and early childhood atopic eczema in a Spanish cohort. Eur J Clin Nutr. 2013;67(6):658–63.
Article
CAS
PubMed
Google Scholar
Pike KC, Calder PC, Inskip HM, et al. Maternal plasma phosphatidylcholine fatty acids and atopy and wheeze in the offspring at age of 6 years. Clin Dev Immunol. 2012;2012:474613.
Article
PubMed
PubMed Central
Google Scholar
Moon RJ, Harvey NC, Robinson SM, et al. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J Clin Endocrinol Metab. 2013;98(1):299–307.
Article
CAS
PubMed
Google Scholar
Olsen SF, Hansen HS, Jensen B, Sorensen TI. Pregnancy duration and the ratio of long-chain n-3 fatty acids to arachidonic acid in erythrocytes from Faroese women. J Intern Med Suppl. 1989;731:185–9.
Article
CAS
PubMed
Google Scholar
Olsen SF, Sorensen JD, Secher NJ, et al. Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet. 1992;339(8800):1003–7.
Article
CAS
PubMed
Google Scholar
Makrides M, Duley L, Olsen SF. Marine oil, and other prostaglandin precursor, supplementation for pregnancy uncomplicated by pre-eclampsia or intrauterine growth restriction. Cochrane Database Syst Rev. 2006;(3):Cd003402.
Imhoff-Kunsch B, Briggs V, Goldenberg T, Ramakrishnan U. Effect of n-3 long-chain polyunsaturated fatty acid intake during pregnancy on maternal, infant, and child health outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:91–107.
Article
PubMed
Google Scholar
Kar S, Wong M, Rogozinska E, Thangaratinam S. Effects of omega-3 fatty acids in prevention of early preterm delivery: a systematic review and meta-analysis of randomized studies. Eur J Obstet Gynecol Reprod Biol. 2016;198:40–6.
Article
CAS
PubMed
Google Scholar
Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010;304(15):1675–83.
Article
CAS
PubMed
Google Scholar
Olsen SF, Secher NJ, Tabor A, Weber T, Walker JJ, Gluud C. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. BJOG. 2000;107(3):382–95.
Article
CAS
PubMed
Google Scholar
Harper M, Thom E, Klebanoff MA, et al. Omega-3 fatty acid supplementation to prevent recurrent preterm birth: a randomized controlled trial. Obstet Gynecol. 2010;115(2 Pt 1):234–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin J, Hamilton BE, Osterman MJ, Curtin SC, Mathers TJ. Births: Final Data for 2012. National vital statistics reports; vol 62 no 9. Hyattsville: National Center for Health Statistics; 2013. http://www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_09.pdf.
Google Scholar
Lockwood CJ, Kuczynski E. Markers of risk for preterm delivery. J Perinat Med. 1999;27(1):5–20.
Article
CAS
PubMed
Google Scholar
Buhimschi CS, Baumbusch MA, Dulay AT, et al. Characterization of RAGE, HMGB1, and S100beta in inflammation-induced preterm birth and fetal tissue injury. Am J Pathol. 2009;175(3):958–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiner CP, Mason CW, Dong Y, Buhimschi IA, Swaan PW, Buhimschi CS. Human effector/initiator gene sets that regulate myometrial contractility during term and preterm labor. Am J Obstet Gynecol. 2010;202(5):474.e471–420.
Article
Google Scholar
Defranco EA, Jacobs TS, Plunkett J, Chaudhari BP, Huettner PC, Muglia LJ. Placental pathologic aberrations in cases of familial idiopathic spontaneous preterm birth. Placenta. 2011;32(5):386–90.
Article
CAS
PubMed
Google Scholar
Rizza S, Tesauro M, Cardillo C, et al. Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis. 2009;206(2):569–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calder PC. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol Nutr Food Res. 2012;56(7):1073–80.
Article
CAS
PubMed
Google Scholar
Rogers LK, Graf AE, Bhatia A, Leonhart KL, Oza-Frank R. Associations between maternal and infant morbidities and sRAGE within the first week of life in extremely preterm infants. PLoS One. 2013;8(12):e82537.
Article
PubMed
PubMed Central
Google Scholar
Rogers LK, Valentine CJ, Keim SA. DHA supplementation: current implications in pregnancy and childhood. Pharmacol Res. 2013;70(1):13–9.
Article
CAS
PubMed
Google Scholar
Matesanz N, Park G, McAllister H, et al. Docosahexaenoic acid improves the nitroso-redox balance and reduces VEGF-mediated angiogenic signaling in microvascular endothelial cells. Invest Ophthalmol Vis Sci. 2010;51(12):6815–25.
Article
PubMed
PubMed Central
Google Scholar
Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(6):529–35.
Article
CAS
PubMed
Google Scholar
Calder PC. Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot Essent Fat Acids. 2007;77(5–6):327–35.
Article
CAS
Google Scholar
Lindstrom TM, Bennett PR. The role of nuclear factor kappa B in human labour. Reproduction (Cambridge, England). 2005;130(5):569–81.
Article
CAS
Google Scholar
Jung SB, Kwon SK, Kwon M, et al. Docosahexaenoic acid improves vascular function via up-regulation of SIRT1 expression in endothelial cells. Biochem Biophys Res Commun. 2013;437(1):114–9.
Article
CAS
PubMed
Google Scholar
Xue B, Yang Z, Wang X, Shi H. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. PLoS One. 2012;7(10):e45990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim PY, Zhong M, Kim YS, Sanborn BM, Allen KG. Long chain polyunsaturated fatty acids alter oxytocin signaling and receptor density in cultured pregnant human myometrial smooth muscle cells. PLoS One. 2012;7(7):e41708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR. Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev. 2005;45(5):559–79.
Article
CAS
PubMed
Google Scholar
Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2(3):355–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem. 2003;278(17):14677–87.
Article
CAS
PubMed
Google Scholar
Serhan CN, Hong S, Gronert K, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196(8):1025–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maskrey BH, Megson IL, Rossi AG, Whitfield PD. Emerging importance of omega-3 fatty acids in the innate immune response: molecular mechanisms and lipidomic strategies for their analysis. Mol Nutr Food Res. 2013;57(8):1390–400.
Article
CAS
PubMed
Google Scholar
Serhan CN, Dalli J, Karamnov S, et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 2012;26(4):1755–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karim SM. Prostaglandins as abortifacients. N Engl J Med. 1971;285(27):1534–5.
Article
CAS
PubMed
Google Scholar
Norwitz ER, Robinson JN, Challis JR. The control of labor. N Engl J Med. 1999;341(9):660–6.
Article
CAS
PubMed
Google Scholar
Pietrantoni E, Del Chierico F, Rigon G, et al. Docosahexaenoic Acid Supplementation during Pregnancy: A Potential Tool to Prevent Membrane Rupture and Preterm Labor. Int J Mol Sci. 2014;15(5):8024–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velten M, Britt Jr RD, Heyob KM, Tipple TE, Rogers LK. Maternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation. J Nutr. 2014;144(3):258–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bastek JA, Brown AG, Foreman MN, et al. The soluble receptor for advanced glycation end products can prospectively identify patients at greatest risk for preterm birth. J Matern Fetal Neonatal Med. 2012;25(9):1762–8.
Article
CAS
PubMed
Google Scholar
Simopoulos AP, Leaf A, Salem Jr N. Workshop statement on the essentiality of and recommended dietary intakes for Omega-6 and Omega-3 fatty acids. Prostaglandins Leukot Essent Fat Acids. 2000;63(3):119–21.
Article
CAS
Google Scholar
Fats and oils in human nutrition. Report of a joint expert consultation. Food and Agriculture Organization of the United Nations and the World Health Organization. FAO Food Nutr Pap. 1994;57:i–xix. 1–147.
Google Scholar
Koletzko B, Cetin I, Brenna JT. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007;98(5):873–7.
Article
CAS
PubMed
Google Scholar
Smuts CM, Borod E, Peeples JM, Carlson SE. High-DHA eggs: feasibility as a means to enhance circulating DHA in mother and infant. Lipids. 2003;38(4):407–14.
Article
CAS
PubMed
Google Scholar
Ramakrishnan U, Stein AD, Parra-Cabrera S, et al. Effects of docosahexaenoic acid supplementation during pregnancy on gestational age and size at birth: randomized, double-blind, placebo-controlled trial in Mexico. Food Nutr Bull. 2010;31(2 Suppl):S108–16.
Article
PubMed
Google Scholar
Mulder KA, King DJ, Innis SM. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. PLoS One. 2014;9(1):e83764.
Article
PubMed
PubMed Central
Google Scholar
DeFranco EA, O’Brien JM, Adair CD, et al. Vaginal progesterone is associated with a decrease in risk for early preterm birth and improved neonatal outcome in women with a short cervix: a secondary analysis from a randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2007;30(5):697–705.
Article
CAS
PubMed
Google Scholar
Iams JD. Identification of candidates for progesterone: why, who, how, and when? Obstet Gynecol. 2014;123(6):1317–26.
Article
PubMed
Google Scholar
Klebanoff MA, Harper M, Lai Y, et al. Fish consumption, erythrocyte fatty acids, and preterm birth. Obstet Gynecol. 2011;117(5):1071–7.
Article
PubMed
PubMed Central
Google Scholar
Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7.
Article
PubMed
PubMed Central
Google Scholar
Committee opinion no 611: method for estimating due date. Obstet Gynecol. 2014;124(4):863–6.
McIIwain J. Data Standards Harmonization: A look at the past, present, and future of interoperability across the clinical research spectrum. Applied Clinical Trials Online: Advanstar Communications. 2010. http://velos.com/wp-content/uploads/How-to-Implement-Investigator-side-Clinical-Research-Systems-Whitepaper.pdf. Accessed 28 May 2014.
Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.
Article
PubMed
PubMed Central
Google Scholar
Kuratko C. Food-frequency questionnaire for assessing long-chain omega-3 fatty-acid intake: Re: Assessing long-chain omega-3 polyunsaturated fatty acids: a tailored food-frequency questionnaire is better. Nutr (Burbank, Los Angeles County, Calif). 2013;29(5):807–8.
Article
Google Scholar
International Conference of Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Guidelines for Good Clinical Practice. 1996. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E6/E6_R1_Guideline.pdf.
Berry S, Carlin BP, Lee JJ, Muller P. Bayesian Adaptive Methods for Clinical Trials. Boca Raton: CRC Press; 2011.
Google Scholar
Patient Centered Outcomes Research Instistitue. PCORI Methodology Standards. 2012. http://www.pcori.org/assets/PCORI-Methodology-Standards.pdf. Accessed 17 June 2013.
Google Scholar