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Abstract 

Background:  Recently, the combination of deep learning and time-lapse imaging provides an objective, standard 
and scientific solution for embryo selection. However, the reported studies were based on blastocyst formation or 
clinical pregnancy as the end point. To the best of our knowledge, there is no predictive model that uses the outcome 
of live birth as the predictive end point. Can a deep learning model predict the probability of live birth from time-
lapse system?

Methods:  This study retrospectively analyzed the time-lapse data and live birth outcomes of embryos samples from 
January 2018 to November 2019. We used the SGD optimizer with an initial learning rate of 0.025 and cosine learn-
ing rate reduction strategy. The network is randomly initialized and trained for 200 epochs from scratch. The model is 
quantitively evaluated over a hold-out test and a 5-fold cross-validation by the average area under the curve (AUC) of 
the receiver operating characteristic (ROC) curve.

Results:  The deep learning model was able to predict live birth outcomes from time-lapse images with an AUC of 
0.968 in 5-fold stratified cross-validation.

Conclusions:  This research reported a deep learning model that predicts the live birth outcome of a single blasto-
cyst transfer. This efficient model for predicting the outcome of live births can automatically analyze the time-lapse 
images of the patient’s embryos without the need for manual embryo annotation and evaluation, and then give a live 
birth prediction score for each embryo, and sort the embryos by the predicted value.
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Introduction
Since Louis Brown was born, the first test tube baby [1], 
more than seven million babies have been born around 
the world attribute to assisted reproduction technology 
(ART) [2]. In the early stage of IVF technology develop-
ment, multiple embryo transfer was the main transfer 
method. However, multiple pregnancy was often accom-
panied by premature delivery, more expenditure and 

higher risk of complications [3–6]. Therefore, with the 
development of assisted reproductive technology, single 
embryo transfer has gradually become the first choice of 
IVF. However, single embryo transfer still faces an urgent 
problem: how to choose the best embryo to transfer to 
maintain the ideal success rate [7]. The trend of choosing 
single embryo transfer is closely related to the improve-
ment and progress of embryo selection technology. 
Therefore, embryo identification and selection technol-
ogy are particularly important and significant. In order 
to solve this problem, scholars have developed several 
methods for identifying and selecting the best embryos 
for transfer, such as: blastocyst culture, time-lapse pho-
tography imaging system and pre-transfer genetic testing 
[8–10].

Open Access

*Correspondence:  s.zhang@hit.edu.cn; jinleirepro@yahoo.com
1 Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, 
Huazhong University of Science and Technology, Wuhan, People’s 
Republic of China
2 School of Computer Science and Technology, Harbin Institute 
of Technology, Weihai 264209, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12884-021-04373-5&domain=pdf


Page 2 of 7Huang et al. BMC Pregnancy and Childbirth           (2022) 22:36 

Embryologists evaluated and observed the embryos 
used optical microscope, which was taken out from the 
conventional incubator at a specific time point during the 
first 5 days of life before the time-lapse imaging system 
was applied to the clinic [11]. Because of this disadvan-
tage, many events in the embryonic development process 
have been missed [12]. And the emergence of time-
lapse photography technology had just made up for this 
shortcoming.

Embryologists use the time-lapse photography sys-
tem to observe and evaluate the embryo that in a stable 
environment, rather than exposed in a variable condition 
(such as changing gas composition, unstable humidity, 
insecure temperature and movement conditions), and 
can obtain a lot of information between embryo develop-
ment, time and embryo potential [13, 14].

Scholars have introduced the mathematical technol-
ogy of artificial intelligence into ART, in order to acquire 
more information from the pictures obtained by the TL 
system, which may trigger a revolution. AI is a term that 
can be divided into many areas, such as: artificial neu-
ral network (ANN), fuzzy logic, genetic algorithm (GA), 
machine learning and deep learning [15, 16].

The emergence of time-lapse incubation makes it pos-
sible to record the complete cycle of an embryo from a 
blastomere to a blastocyst, when all morphokinetic fea-
tures centralized [17]. Meanwhile, owing to its abundant 
time-lapse data, time-lapse incubation emerges up many 
new research ideas combined with deep learning tech-
nology which is known as a data driven method. Deep 
learning can uncover numerous subtle features which 
may not be paid attention to manually but do help the 
corresponding classification or prediction. When fed 
with enough well labeled data, deep learning model have 
the ability to find an optimal representation of the given 
dataset by continuously conducting back-propagation. 
Thus, we can explore the general pattern which lead to a 
specific mapping from data to our desired tasks.

The deep learning literature that has been reported on 
embryo selection is a design study with blastocyst forma-
tion or clinical pregnancy as the end point. To the best 
of our knowledge, there is no research on deep learning 
models designed with the end of live birth outcome. In 
this study, we want to analyze the data of single-center, 

large sample of single blastocyst transfer to obtain an effi-
cient predictive model.

Materials and methods
Patients
This was a noninterventional, retrospective, single-center 
cohort study of patients undergoing routine practice. 
In order to reflect the broad range of patients typically 
encountered in clinical practice, no inclusion/exclu-
sion criteria were applied on baseline characteristics. 
The time-lapse embryo data used in our work are col-
lected from Reproductive Medicine Center of Tongji 
Hospital, Huazhong University of Science and Technol-
ogy, Wuhan, China. The whole dataset contains 33,738 
embryo samples captured by Embryoscope Plus time-
lapse microscope system. The fertilization time of these 
embryos were from January 2018 to November 2019, and 
we continuously pay return visits until January 2021 to 
confirm whether these IVF treatments lead to live birth 
outcomes. All patients signed written informed consent 
and underwent the routine clinical treatment performed 
in our center. No additional intervention was performed.

Ethical approval
The study conformed to the Declaration of Helsinki for 
Medical Research involving Human Subjects. It was 
approved by the Ethical Committee of Reproductive 
Medicine Center, Tongji Hospital, Tongji Medicine Col-
lege, Huazhong University of Science and Technology.

Dataset
The classification of the outcome of each embryo was 
shown in Table 1. And the final indicator was live birth. 
The whole dataset contained 33,738 embryos with labels 
of positive, negative, and pending, as shown in Fig.  1. 
The pending embryos referred to the unthawed embryos 
which could be exploited in our future work, but were 
excluded in the experiments of this paper. Meanwhile, 
only the single blastocyst transfer embryos were col-
lected, including fresh cycle and frozen-thaw cycle. 
Thus, the engaged dataset in this paper contained 15,434 
embryos with positive and negative labels.

Table 1  Classification of the outcome of each embryo involved

Classification Outcome

Positive Live birth after a complete pregnancy cycle

Negative Fail to live birth or embryo discarded because of a failed or abnormal 
fertilization, grossly abnormal morphology or aneuploidy from preimplan-
tation genetic testing

Pending Embryo in storage and not yet used
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Embryo culture and frozen‑embryo transfer (FET)
The methods used for sperm preparation, for IVF and 
embryo culture, have been described previously [18]. 
Briefly, semen was collected in sterile containers by 
masturbation after 3–5 d of sexual abstinence and then 
maintained at 37 °C for 30 min. After liquefaction, sam-
ples were analyzed for sperm concentration, motility 
and morphology according to the World Health Organ-
ization criteria. The oocytes were incubated in G-IVF 
medium (Vitrolife) and fertilized 3 to 4 h after retrieval. 
Normal fertilization was defined as zygotes with two 
pronuclei (2PN) and fertilized oocytes were continu-
ously cultured in G1 medium for 2 more days. Then, 
the embryos were transferred to G2 medium and con-
tinued to be cultured for 3 more days. The additional 
good-quality blastocysts were cryopreserved for sub-
sequent frozen-embryo transfer (FET) cycles. For the 
FET cycles, oral estradiol (Progynova, Bayer) was pro-
vided, 2 mg/d from cycle day 1–4, 4 mg/d from day 5–8 
and 6 mg/d from day 9–12. Transvaginal ultrasound 
scanning was performed to assess the endometrial 
thickness and ovulation from day 13; the estradiol dos-
age was adjusted based on the endometrial thickness. 
Administration of 40 mg progesterone intramuscularly 
was given when the endometrium reached a thickness 
of 8 mm or maximum. Administration of 60–80 mg of 
progesterone was provided for the following 5 days. 
Blastocysts transfer was performed on day 6, after 
5 days of progesterone administration.

Serum hCG was measured to diagnosis a pregnancy 
2 weeks after embryo transfer and then was tested serially 
to monitor rising titers. A clinical pregnancy was defined 
as the presence of a gestational sac with fetal heart activ-
ity observed on ultrasound examination 5 weeks after 
oocyte retrieval [19]. The live birth outcome data were 
obtained by telephone interview of the parents after 
delivery.

Deep learning model
In this work, we designed an end-to-end deep learn-
ing model to predict live birth probability. We label our 
embryo samples by 0 and 1 according to real live birth 
outcomes, where 1 represents live birth whereas 0 rep-
resents not. The designed supervised network regresses 
the discrete prediction value between 0 and 1 under the 
guidance of ground truth labels.

The network structure consists of seven convolution 
modules and two fully connected layers. The first mod-
ule contains three convolution blocks which represents 
a combination of a convolution layer, a batch normali-
zation layer and a following ReLU (Rectified Linear 
Unit) as an activation function. As is widely known that 
the residual block proposed in ResNet [20] is demon-
strated effective in numerous classification tasks, the 
subsequent six convolution modules who share the 
same architecture are composed of three basic residual 
blocks and a convolution block. Feature maps are down 
sampled at the last convolution block of each module. 

Fig. 1  The outcomes of the embryos being studied
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The whole network in this work can be described a 
ResNet like network, as shown in Table 2. but the num-
ber of modules differs from that in benchmark struc-
ture. Also, the complexity of our model is much higher 
than the benchmark model, specifically reflected on the 
number of convolution kernels.

We utilize BCE-Loss (binary cross entropy loss) as 
a loss function to guide the backpropagation during 
training term when the model constantly optimizes 
itself. Since the loss function calculate the distance 
between output predictions and target labels, our pur-
pose is to minimize the loss value.

Training strategies
Aimed at the extremely imbalance of the positive and 
negative samples, we implement the following measures 
during the training term. In the cross-validation experi-
ment, we perform data augmentation after splitting the 
dataset according to Table  3. The specific method is as 
follows: Firstly, we conduct abundant data augmenta-
tion measures, including affine transformations and ran-
domly coarse dropout. Affine transformations refer to 
flip, translation, rotation, scaling, each operation occurs 
randomly at a probability of 50 %. Coarse dropout means 
randomly drop some local pixels, the selected local pix-
els are painted in solid black, we set the probability rang-
ing from 2 to 5%. Secondly, we over sample the positive 
samples at a certain multiple, which equals to the ratio of 
positive and negative samples, i.e., sixteen in our experi-
ments. The original images captured by time-lapse incu-
bation are 8002 pixels, which should be further resized to 
2242 for network training after data augmentation.

We used the SGD optimizer with an initial learning 
rate of 0.025 and cosine learning rate reduction strategy. 
The network is randomly initialized and trained for 200 
epochs from scratch.

Performance testing
The model is quantitively evaluated over a 5-fold cross-
validation by the average area under the curve (AUC) of 
the receiver operating characteristic (ROC) curve.

ROC curve connects all points described by true posi-
tive rate and false positive rate under all possible thresh-
olds, which is a boundary value between positive and 
negative samples. Considering that true positive rate 
and false positive rate are in a trade-off relationship cor-
responding to thresholds, we can quantify the discrimi-
nating power by calculating the area under the curve, this 
is so-called AUC. A binary classifier who has incompa-
rable discriminating power can possess an AUC value 
of 1, whereas the weakest who almost emerge the judge-
ment randomly possess an AUC value of 0.5, and a higher 
AUC value implies a better performance. AUC is more 

Table 2  Network structure of the proposed method. The basic 
block is engaged from ResNet18 [20]

Layer Filter Size Output Size

Conv1_x 7 × 7, 64
3 × 3, 64
3 × 3, 128, stride 2

224 × 224
224 × 224
112 × 112

Conv2_x
[

3× 3, 128

3× 3, 128

]

× 3

3 × 3, 256, stride 2

112 × 112
56 × 56

Conv3_x
[

3× 3, 256

3× 3, 256

]

× 3

3 × 3, 512, stride 2

56 × 56
28 × 28

Conv4_x
[

3× 3, 512

3× 3, 512

]

× 3

3 × 3, 1024, stride 2

28 × 28
14 × 14

Conv5_x
[

3× 3, 1024

3× 3, 1024

]

× 3

3 × 3, 2048, stride 2

14 × 14
7 × 7

Conv6_x
[

3× 3, 2048

3× 3, 2048

]

× 2

3 × 3, 2048

7 × 7
5 × 5

Conv7_x
[

3× 3, 2048

3× 3, 2048

]

× 2

3 × 3, 2048

5 × 5
3 × 3

Fc1 Max pool  3 × 3
2048-d fc

1 × 1

Table 3  Result of the 5-fold cross-validation analysis

Average AUC, The mean area under the curve across 5 cross-validation steps

Fold 1
(n = 3812)

Fold 2
(n = 3812)

Fold 3
(n = 3811)

Fold 4
(n = 3811)

Fold 5
(n = 3811)

AUC​

1 Test Train Train Train Train 0.970

2 Train Test Train Train Train 0.964

3 Train Train Test Train Train 0.968

4 Train Train Train Test Train 0.976

5 Train Train Train Train Test 0.960

Average 0.968
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reasonable than accuracy especially in classification tasks 
with imbalance data.

In order to comprehensively evaluate the performance 
of our model, we perform a hold-out test and a 5-fold 
cross-validation simultaneously [21]. In the hold-out 
test or so-called train-val-test approach, we randomly 
split the dataset in a ratio of 5:1:1 for training set, vali-
dation set, and test set, respectively. In the latter evalu-
ation method, we randomly divide our data into five 
parts with equal size, where the proportion of positive 
and negative samples in each separate is same. Then, five 
models should be trained. In each case, a specific subset 
is selected for validation while the remaining four subsets 
serve as a training set. Finally, we can figure out the mean 
AUC of the five folds to evaluate the performance on 
the whole dataset. Compared with hold-out test, cross-
validation can eliminate the possible overestimating or 
underestimating caused by undesired sample division.

Results
From January 2018 to November 2019, a total of 
5913 cycles used the time-lapse culture system. Among 
them, some patients have not been transferred in fresh 
cycle, and their embryos have not yet been thawed. In 
the end, 3382 fresh cycles and 3270 frozen-thaw trans-
fer (FET) cycles were included in the study and 33,738 
embryos samples were analyzed. Basic information of the 
patients included in this study was shown in Table 4.

Roc
Analysis of the ROC was shown in Fig. 2. The resulting 
AUC of this research to predict live birth on the testing 
dataset was 0.968.

5‑fold cross‑validation
Table 3 showed the results of 5-fold cross-validation. The 
average value of AUC was 0.968. The AUC was reproduc-
ible in individual train-validation runs.

Hold‑out test
The AUC value of the conducted hold-out test was 0.957, 
which was evaluated on the test set. The result was com-
parable with the 5-fold cross-validation.

Discussion
This study is a preliminary study of deep learning with 
live birth data as the end point during the IVF cycle. Our 
results show that Timelapse images can be combined 
with deep learning technology for clinical applications.

Morales et al. [22], Xu et al. [23] and Santos Filho et al. 
[24] used static images to assess embryo quality or select 
the best embryos to be transferred in the absence of early 
embryo development data. These methods lack support 
of more comprehensive data.

Dirvanauskas et al. [25] used convolutional neural net-
work (CNN) to predict the developmental stage of the 
embryo analyze by analyze embryo images obtained from 
the time-lapse photography system, with a success rate 
of 97.62%. However, this method does not have the abil-
ity to predict pregnancy. Khosravi et al. developed a new 
framework (STORK) based on the inception of Google’s 
model to predict the quality of embryos with an AUC as 
high as 0.98. The study has a large sample size, complex 
model, and high accuracy, but it cannot be used to pre-
dict live births [26]. It is demonstrated that our model 
has a better performance when compared with existing 
benchmark model, but it still deserves to be optimized 
since it’s high complexity. Such a complex network 
requires considerable computing resources, so it depends 
highly on hardware device.

There is also a latest report that creates the predictive 
model of blastocyst transfer [27]. The author analyzed the 
data of more than 10,000 embryos and obtained a predic-
tive model with an AUC of 0.93. However, the predictive 

Table 4  Basic information of the patients included in this study

Age (y) 30.4 ± 3.9

Duration of infertility (y) 3.3 ± 2.3

Duration of stimulation (d) 10.4 ± 1.8

Basal FSH (IU/L) 7.4 ± 1.9

No. of oocytes retrieved 12.9 ± 4.2

No. of mature oocytes 11.0 ± 3.8

No. of embryo cultured 7.9 ± 3.5

Fig. 2  ROC curve for prediction of live birth. ROC, Receiver operating 
characteristic. AUC, area under the curve
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endpoint of this study is the clinical pregnancy, which 
is the most prominent difference from our study. In this 
study, we hope to get the best predictive effect, so we 
chose to predict the blastocyst transfer based on the final 
live birth outcome.

Obviously, there is no single method that can solve all 
the problems in the field of assisted reproduction, and 
different methods have their own key research direc-
tions. The model we developed was very complex and has 
a high accuracy rate. That includes a large sample size, 
and the sample database covers patients and clinical pro-
grams with various conditions. The results are repeatable 
and have high clinical guidance significance. However, 
we have to admit that our data come from the embryo 
images obtained by the time-lapse photography system 
after fertilization, ranging from 105 h to 125 h, instead of 
video data which lacks early embryo development data. If 
we generalize this model into the task of prediction from 
3-day embryos, more refined works need to be done. As 
we all known, more spatiotemporal features can be cap-
tured if we use the entire video as an input. But we find 
the predictive power will not progress obviously if we 
use the whole video as input rather than the blastocyst 
frames, considering the parameters of a model are greatly 
restricted due to the capacity of machines when faced 
with video data.

There is no clear evidence that AI applied to IVF can 
increase the cumulative success rate [28, 29]. Whether a 
patient can finally give birth to a healthy baby is not only 
related to the embryo itself, but also to the patient’s own 
health, age, reproductive history, clinical plan and many 
other factors. Our deep learning model does not include 
these variables in the database, which is also the direc-
tion we need to work hard in the future. It is worth not-
ing that the live birth rate in this study showed a high 
level (45.6%). As we all know, age and ovarian reserve are 
very important factors that determine the clinical preg-
nancy rate and live birth rate of IVF [30]. This higher live 
birth rate may be related to the younger population in 
this study (average age is 30.4 years) and better ovarian 
reserve (average number of oocytes retrieved is 12.9).

In 2019, an important paper was reported in AI-
assisted embryo selection, the author retrospectively 
analyzed time-lapse videos and clinical outcomes of 
10,638 embryos from eight different IVF clinics [31]. 
The deep learning model they reported was able to pre-
dict fetal heart pregnancy from time-lapse videos with 
an AUC of 0.93. We think our research is different. This 
article is a single-center research. The advantage of 
this lies in the data analysis of large samples in a single 
center, which avoids the influence of different embryo 
operation procedures and different embryo culture 

systems. On the other hand, we directly used the live 
birth outcome as the deep learning model label. The 
false positive data of aborted embryos can be excluded.

There is another flaw in this study, that is, the samples 
are all from blastocyst transfer, and there is no model 
design for cleavage embryo transfer. In fact, we have 
tried deep learning for the evolution of the cleavage 
stage, but the effect is not satisfactory. This may be one 
of the reasons why there is no model reported for pre-
dicting the outcome of the cleavage stage embryo [27, 
31, 32].

In conclusion, this model has good predictive value 
for embryos selection by deep learning. It can help 
embryologists choose the best embryos for transfer, 
freezing and thaw, and can shorten the time for patients 
from embryo transfer to becoming a parent.
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