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Abstract

Background: High parity is associated with greater cardiovascular disease (CVD) among mid-life and older women.
Prospective studies of arterial change throughout pregnancy are needed to provide insight into potential
mechanisms. This study assessed vascular adaptation across pregnancy in healthy first-time pregnant women.

Methods: The Maternal Vascular Adaptation to Healthy Pregnancy Study (Pittsburgh, PA, 2010-2015) assessed 37
primigravid women each trimester, 6-8 weeks after delivery and 1-5 years postpartum, with B-mode ultrasound
imaging of common carotid artery (CCA) intima-media thickness (IMT) and inter-adventitial diameter (IAD) to assess
associations with physical and cardiometabolic measures.

Results: Thirty-seven women (age 28.2 + 4.5 years, pre-pregnant BMI 24.4 + 3.2 kg/m?) experienced uncomplicated
pregnancies. After adjustment for age and pre-pregnancy BMI, mean (SE) IAD (mm) increased each trimester, from
6.38 (0.08) in the 1st trimester to 6.92 (0.09) in the 3rd trimester, and then returned to 1st trimester levels postpartum (6.35
[0.07], P< 0.0017). In contrast, mean (SE) CCA IMT (mm) increased from the 2nd trimester (i.e, 0.546 [0.01]) onward, and
remained higher at an average of 2.7 years postpartum (0.581 [0.02], P=0.03). Weight partially explained changes in

IAD.

disease, Vascular remodeling

Conclusions: In uncomplicated first pregnancies, IAD increased and returned to 1st trimester levels postpartum. In
contrast, CCA IMT remained increased 2 years postpartum. Maternal weight explained vascular changes better than did
metabolic changes. Increased postpartum CCA IMT may persist and contribute to long-term CVD risk.
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Background

High parity is associated with greater cardiovascular dis-
ease (CVD) risk in women [1]. Although some of this
risk may be due to socio-economic status and lifestyle
factors associated with greater parity, acute physiologic
changes during pregnancy also may contribute to CVD
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risk [1-4]. For example, either weight gain or the athero-
genic metabolic changes of pregnancy may instigate per-
sistent unhealthy vascular changes [5, 6]. However, studies
that could illuminate these relationships have been limited
by 1) sample sizes inadequate to detect significant differ-
ences in vessel measures [7, 8], 2) failure to collect serial
arterial measures [6], 3) use of non-standard techniques to
assess the vasculature [5, 9], 4) short follow-up [7, 8], and
5) lack of biomarker collection across the pregnancy cycle
[5-10].

Structural arterial changes during pregnancy can be
assessed using B-mode ultrasonography of the carotid
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artery, a well-established, non-invasive, reproducible
technique [11]. Abnormal values of two measures of ar-
terial structure—greater intima-media thickness (IMT)
and inter-adventitial diameter (IAD) of the common
carotid artery (CCA)—are associated with greater CVD
risk factor burden [12-14], arterial aging [15], and higher
incidence of CVD [13, 16, 17]. The normal changes that
occur in the CCA IMT and IAD during and after a healthy
pregnancy have not been well established.

The primary objective of our Maternal Vascular
Adaptation to Healthy Pregnancy (MVP) study was to
assess vascular changes in normal first pregnancies,
using an adequate sample size, serial measures, a stan-
dardized technique to assess vasculature, and including
collection of biomarkers. We hypothesized that the vas-
culature would transiently adapt to the increased blood
volume and metabolic requirements of healthy preg-
nancy, and that these adaptations would be associated
with pregnancy weight gain and changes in levels of car-
diometabolic factors.

Methods

Study design and population

The MVP study prospectively assessed common carotid
artery measures in a cohort of healthy primigravid
women. Eligible participants recruited from the commu-
nity were healthy, non-smoking primigravid women,
aged <40 years, at less than 38 weeks of gestational age.
Exclusion criteria were the following: 1) vasoactive medi-
cation use; 2) infertility history—defined as either experi-
encing a period of at least 12 months marked by the
inability to achieve pregnancy or using fertility medica-
tions to achieve pregnancy; 3) family history of prema-
ture coronary artery disease; 4) previous abortion; 5)
multiple gestation.

Study visits were scheduled at 12-14, 24—26, and 36—
38 weeks of pregnancy, and 6-8 weeks postpartum; all
visits were conducted between in 2010 to 2013. After
telephone screening for eligibility, women began the
study at any one of the pregnancy visits. Each visit in-
volved physical measures (e.g., height and weight) and
ultrasound measures of the carotid artery. We calculated
that 31 women were needed as participants to generate
80% power to detect a 0.5 SD difference for change in
CCA IMT and IAD given an assumed 0.5 correlation
among the repeated observations. Because we estimated
that 1) 10-20% of women develop a pregnancy compli-
cation and 2) our study would experience 25% attrition,
we targeted recruitment of 46. The study enrolled 44
women, of whom 43 had multiple visits, and six devel-
oped pregnancy complications (one preeclampsia; 3 ges-
tational hypertension; 2 preterm births, one of which
had a placental abruption), which left 37 participants
with uncomplicated pregnancies and full term births of
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normal weight newborns in the analytic sample for our
analysis.

These participants were invited to return for a
follow-up visit 1-5 years after their first postpartum
visit. Fourteen had moved out of the region and were
unable to participate. Participants (i.e., five women) were
excluded if they were pregnant or if they had given birth
within the previous 4 months, which generated seven-
teen potential participants. Of these seventeen, fourteen
experienced uncomplicated first pregnancies and were,
therefore, included in our analysis. These follow-up visits
occurred between 2014 and 2015. Participants signed an
informed consent document approved by the University
of Pittsburgh, Human Research Protection Office.

Carotid artery measures

Carotid ultrasounds were performed by a trained re-
search vascular sonographer from the University of
Pittsburgh, Ultrasound Research Laboratory (URL). Par-
ticipants were placed supine, with a right hip wedge for
comfort if necessary, and the common carotid artery
was scanned bilaterally with high-resolution B-mode
ultrasound (ACUSON Cypress System, Malvern, PA.)
Digitized images of the common carotid artery were ob-
tained at end diastole, 1 cm proximal to the carotid bulb,
and IMT was measured as the distance from the
media-adventitial interface to the intima-lumen interface
of both the near and far wall of the artery. Approxi-
mately 140 measurements of thickness were made for
each 1-cm segment, and the mean of each segment was
calculated. IMT reported represents the mean value for
near and far wall bilaterally. IAD was measured as dis-
tance from the adventitial-medial interface of the near
arterial wall to the media-adventitial interface of the
arterial wall using the same CCA segment. Images
were read by one reader, using a computerized,
semi-automated reading program system [18]. Repro-
ducibility of carotid measures at the URL was excel-
lent during the time period of the study, with an
intraclass correlation coefficient within reader of over
0.91 for CCA IMT and over 0.99 for IAD.

Demographic, pregnancy history, physical, and laboratory
measures

At the initial visit, participants completed a
self-administered demographic form. Research staff 1)
measured the height of participants using a stadiometer
and 2) weighed the participants on a standard balance
scale. The mean value of two readings for each measure
was recorded. Pre-pregnancy weight was identified pref-
erentially as the pre-pregnancy weight documented in
the prenatal record or, if not available, as a documented
weight in the medical record in the 3 months prior to
the last menstrual period. Pre-pregnancy BMI was
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calculated as pre-pregnancy weight in kilograms di-
vided by height in meters, squared. Weight change
was calculated as the difference between current and
pre-pregnancy weight.

Pulse and blood pressure were measured, according to
a standardized protocol. Three measurements of each
were taken, and the mean of the last two measurements
was recorded and used for our analysis. Data resulting
from both demographic and physical measures and re-
cords reviews were collected and managed using REDCap
electronic data capture tools hosted at the University of
Pittsburgh [19].

Laboratory assays of fasting serum samples collected
at each visit were performed at the Heinz Nutrition La-
boratory at the University of Pittsburgh, Graduate
School of Public Health, and the following parameters
were determined using standard laboratory procedures:
total cholesterol, high density lipoprotein (HDL-c), low
density lipoprotein (LDL-c) [20], triglycerides [21], and
glucose [22]. Insulin was measured using a standard
radio-immune assay (Linco Research, St. Charles, MO).
HOMA-IR, a measure of insulin resistance, was calcu-
lated as (glucose (mg/dl) x insulin (pU/ml))/405 [23].
High-sensitivity C-reactive protein (hsCRP) was mea-
sured with an enzyme-linked immunoassay (Alpha Diag-
nostics International Inc., San Antonio, TX).

Prenatal and birth records were reviewed after the first
postpartum study visit to exclude women with complica-
tions, which included gestational hypertension, pre-
eclampsia, and preterm birth. Participants completed an
interval reproductive and health history form at the sec-
ond postpartum visit.

Statistical analysis

Measures with normal distributions were evaluated as
means * standard deviations. Measures with
non-normal distributions (i.e., hsCRP and HOMA-IR)
were analyzed as medians with interquartile range and
log-transformed for our analysis. Categorical variables
(e.g., employment) were presented as percentages. Linear
mixed models featuring random intercepts and Toeplitz
variance and covariance structure were used to estimate
means for CCA IMT and IAD.

Baseline maternal age and pre-pregnancy BMI were
included a priori in all models. Separate models were
constructed for systolic blood pressure, weight, and
weight change. For CCA IMT, models were also con-
structed including IAD, since over time increases in IAD
can cause increases in CCA IMT. Predictors with a sig-
nificance level of P<0.2 were then placed into models
together, and predictors with a significance level of P <
0.1 were retained. Next, biomarkers were tested indi-
vidually in the final models identified for each outcome.
Biomarkers with a significance level of P<0.1 were then
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placed into the best models together, and significant pre-
dictors were retained. A sensitivity analysis was per-
formed to eliminate three extreme outlier values for
hsCRP (ie. = 60 mg/L). P values of 0.05 or less were
considered statistically significant for the analysis. As a
sensitivity analysis, the analysis was repeated using only
data from women who completed all four initial visits.
Associations between physical and carotid measures
were not assessed for the second postpartum visit be-
cause 1) associations may differ during pregnancy as a
result of dramatic hematologic and hormonal changes
and 2) the sample size was smaller (i.e., 14) for this visit.
Statistical analyses were performed using SAS statistical
software releases 9.3 and 9.4 (SAS Institute, Cary, NC).

Results

The mean number of initial study visits was 3.3 (range
2-4), and 15 participants (41%) completed all 4 visits.
The average participant age was 28.4 + 4.6 years, and the
average participant pre-pregnancy BMI was 24.3 +3.3.
Participants were predominantly white (91.9%), married
or living as married (89.2%), well-educated (89.1% col-
lege graduate or greater), and employed (64.9% full-time;
24.3% part-time). Mean birth weight was 3427.2+
224.5 g and mean gestational age at birth was 39.7 +
1.3 weeks. Route of birth was vaginal for 91.2% of
women, and no newborns had apgar scores less than 7
at 1 or 5 min of life. At the 6-8-week postpartum visit,
88% of participants were breastfeeding their infants ex-
clusively. Fourteen participants completed the second
postpartum visit 1-5 years (mean 2.7 years) after their
first birth, and seven of these participants had experi-
enced subsequent pregnancies (i.e., five participants re-
ported having one additional birth, one participant
reported having two additional births, and one partici-
pant having a spontaneous abortion).

Among the participants, IAD increased throughout
pregnancy from a mean (SE) of 6.47 (.12) mm in the 1st
trimester to 6.89 (.10) mm in the 3rd trimester (all P
< 0.05). IAD then returned to early pregnancy values
(i.e, 6.36 [.07] mm, P=0.76) by the first postpartum
visit, and we observed no further decrease at the second
postpartum visit (6.42 [0.11] mm) (Table 1). Adjustment
for maternal age and pre-pregnancy BMI minimally af-
fected these estimates (Fig. 1). CCA IMT remained
stable between the 1st and 2nd trimesters and then in-
creased in the 3rd trimester and through the postpartum
period (i.e., 1st trimester mean [SE] 0.547 [.02] mm, first
postpartum 0.565 [.01] mm, second postpartum 0.581
[0.02] mm) (Table 1). These values changed minimally
when adjusted for maternal age and pre-pregnancy BMI
(Fig. 2).

Changes in weight, blood pressure, heart rate, lipid,
glucose, and hsCRP concentrations followed expected
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Table 1 Unadjusted values for vascular measures and biomarkers by trimester and postpartum
Measure 1st trimester 2nd trimester 3rd trimester 1st postpartum 2nd postpartum Overall
n=17 n=32 n=37 n=35 n=14 P-value
Inter-adventitial diameter (mm) 647 (0.12) 6.79 (0.08) 6.89 (0.10) 6.36 (0.07) 642 (0.11) < 0.0001
CCA intima-media thickness (mm) 0.547 (0.02) 0.546 (0.01) 0.553 (0.01) 0.565 (0.01) 0.581 (0.02) 0.03
Weight (kg) 68.7 (2.2) 73.1 (1.6) 795 (1.8) 69.2 (1.5) 70.2 (1.9) < 0.0001
Weight change (kg) 0.55 (0.46) 727 (062) 144 (0.91) 43 (0.75) 3.7 (1) < 0.0001
Systolic blood pressure (mm Hg) 103.7 (2.1) 106.0 (1.7) 1104 (14) 106.2 (1.7) 102.9 (2.5) < 0.0001
Heart rate (bpm) 780 (24) 79.8 (1.6) 82.0 (1.5 68.1 (1.5) 63.6 (2.5) < 0.0001
Total cholesterol (mg/dl) 201.7 (89) 2573 (7.0) 2731 (7.2) 1914 (5.5) 194.8 (84) < 0.0001
LDL-c (mg/dl) 111.2 (7.0) 1480 (6.3) 155.5 (6.6) 114.7 (4.8) 1219 (7.0) < 0.0001
Triglycerides (mg/dl) 108.3 (10.5) 176.5 (10.2) 250.7 (13.6) 773 (7.0) 87.1 (9.6) < 0.0001
HDL-c (mg/dl) 68.8 (2.2) 740 (3.1) 66.8 (2.3) 61.2 (1.8) 556 (2.9) < 0.0001
Glucose (mg/dl) 793 (1.5) 772 (1.1) 770 (1.2) 826 (1.2) 885 (1.9) < 0.0001
Insulin (uU/ml) 8.84 (0.78) 11.25 (0.98) 11.95 (0.81) 8.59 (0.50) 10.76 (0.82) 0.0008
HOMA-IR 1.64 [1.32, 2.09] 2.16 [1.56, 2.56] 228 [1.67,2.51] 1.72 [1.34, 2.13] 2.20 [1.76, 2.87] 0.03
hsCRP (mg/L) 3.58 [2.16, 5.57] 3.36 [231, 549] 3.29 [2.24,7.01] 1.20 [77, 2.44] 0.96 [0.37, 1.50] < 0.0001

Normally distributed values presented as mean (SE) and P value from mixed models. Skewed values presented as median [IQR] and P-value from Wilcoxon rank-
sum test. CCA is common carotid artery. Weight change is change from pre-pregnancy weight

patterns for healthy pregnancies [24] (Table 1). Greater
weight was associated marginally with greater IAD, and
attenuated the increase in IAD that occurred throughout
pregnancy (Table 2, Model 3). When metabolic factors
were considered, higher triglyceride concentrations were
associated (P< 0.0001) with lower IAD, but higher
hsCRP was associated (P =0.0002) with greater IAD
(Table 2, Model 5, and Table 3).

Higher SBP was associated with greater CCA IMT;
nonetheless, accounting for SBP did not attenuate the
postpartum increase in CCA IMT (Table 4, Model 2).
Greater weight gain was marginally associated with thin-
ner CCA IMT (Table 4, Models 5, 6, 7), and greater IAD
was associated with thicker CCA IMT (Table 4, Model
6). In addition, when metabolic factors were considered,
greater HOMA-IR was associated with lower CCA IMT
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Fig. 1 Changes in inter-adventitial diameter across pregnancy, adjusted for maternal age and pre-pregnancy BMI. All pairwise comparisons
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Table 2 Associations® between inter-adventitial diameter, physical predictors, and significant metabolic predictors

Predictor

Trimester 1

Trimester 2

Trimester 3

Postpartum

Age (years)

Pre-pregnancy BMI (kg/m?)
SBP (mmHG)

Predictor

Trimester 1

Trimester 2

Trimester 3

Postpartum

Age (years)

Pre-pregnancy BMI (kg/m?)
Weight (kg)

Weight change (kg)
Triglycerides (mg/dl)

Log hsCRP (mg/L)

Unadjusted
B (SE)

Ref

0361 (07)°
0498 (07)°
—0.015 (.05)

Model 3°

B (SE)

Ref

0.294 (.09)°
0338 (13)°
—0.032 (05)
0.004 (02)
0013 (03)
0015 (01)

P-value

0.0001
0.0001
0.74

P-value

0.001
0.009
049
0.82
067
0.08

Model 1°

B (SE)

Ref

0361 (07)°

0499 (07)*
—0.014 (05)
~0.004 (02)
0.046 (02)

Model 4°

R (SE)

Ref

0.321 (09)°
0392 (14)°

—0.020 (.05)
—0.001 (02)
0.047 (02)

0.010 (01)

Model 2°
P-value 3 (SE) P-value
Ref
< 0.0001 0389 (07)° <0.001
<0.0001 0511 (07)° <0.001
0.76 0.010 (.04) 0.81
0.81 —0.003 (.02) 0.83
0.06 0.042 (02) 0.09
0.004 (.00) 0.29
Model 5°
P-value 3 (SE) P-value
0.84 Ref
<0001 0456 (07)° <0.0001
0.008 0683 (.12)“ <0.0001
0.69 —0.029 (04) 044
0.93 —0.006 (.02) 0.73
0.06 0.006 (.03) 0.85
0.011 (01) 0.12
0.29
—0.002 (.00) < 0.0001
0.070 (02) 0.0002

“Linear mixed models

PModel 1: Adjusted for age & pre-pregnancy BMI. Model 2: Model 1 plus SBP. Model 3: Model 1 plus weight. Model 4: Model 1 plus weight change. Model 5:
Model 3 plus triglycerides and Log hsCRP

“Different from postpartum at p < .01. “Different from second trimester at p < .05
Weight change is from pre-pregnancy weight. 3 represents change in millimeters
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Table 3 Associations® of individual biomarkers with inter-adventitial diameter and common carotid artery intima-media thickness

Biomarker Inter-adventitial Diameter® Common Carotid Artery Intima-Media Thickness®
B (SE) P-value {3 (SE) P-value
Total Cholesterol (mg/dl) -0.001 (0.1) 0.18 —0.000 (.00) 0.95
HDL-c (mg/dl) 0.002 (.00) 0.52 —0.000 (.00) 0.39
Triglycerides (mg/dl) —0.001 (.00) 0.01 0.000 (.00) 045
LDL-c (mg/dl) —0.001 (.00) 0.38 —0.000 (.00) 0.80
hsCRP (mg/L) 0.004 (.00) 0.03 0.000 (.00) 0.54
Fasting insulin (uU/ml) 0.004 (.01) 0.55 —0.002 (.00) 0.13
Fasting glucose (mg/dl) —0.005 (.00) 013 —0.001 (.00) 0.09
Log HOMA-IR —-0.013 (07) 0.86 —-0.029 (01) 0.02

“Linear mixed models

PModels include time point in pregnancy cycle (trimester or postpartum), age, pre-pregnancy BMI, systolic blood pressure, and weight change from
pre-pregnancy baseline

B represents change in millimeters

values (Table 4, Model 7). Accounting for HOMA-IR  outliers, were consistent with those from the primary
did not affect the increased CCA IMT observed postpar-  analyses (Additional file 1: Table S1 and Add-
tum (Table 4, Model 7). itional file 2: Table S2). Moreover, for the second

Results of sensitivity analyses limited to women who  postpartum visit, no reproductive factors (e.g., number
completed all four initial visits and that excluded hsCRP  of interval pregnancies or breastfeeding status) were

Table 4 Associations® between common carotid artery intima-media thickness, physical predictors, and significant metabolic

predictors
Predictor Unadjusted Model 1° Model 2° Model 3°

3 (SEB) P-value 3 (SEB) P-value 3 (SB) P-value 3 (SEB) P-value
Trimester 1 Ref Ref Ref Ref
Trimester 2 0.001 (.01) 0.89 0.001 (01) 0.89 0.002 (01) 0.85 0.007 (01) 0.56
Trimester 3 0.013 (01) 0.24 3(01) 0.24 0.009 (01) 043 0.022 (02) 0.22
Postpartum 0.027 (01)° 0.02 0.027 (01) © 0.02 0.026 (01) 0.03 0.031 (01)° 0.01
Age (yr) 0.004 (.00) 0.03 0.004 (.00) 0.02 0.003 (.00) 0.08
Pre-pregnancy BMI (kg/mz) —0.001 (.00) 0.78 —0.002 (.00) 045 0.000 (.00) 0.93
SBP (mm Hg) 0.001 (.00) 0.08
Weight (kg) —0.000 (.00) 066
Predictor Model 4° Model 5 ® Model 6° Model 7°

3 (SE) P-value 3 (SE) P-value 3 (SE) P-value 3 (SE) P-value
Trimester 1 Ref Ref Ref Ref
Trimester 2 6 (01) 0.19 0.018 (01) 0.17 0.007 (01) 0.59 0.009 (01) 0.51
Trimester 3 0.042 (02)° 0.04 0.041 (02) 0.046 0.027 (02) 0.19 0.033 (02)° 0.13
Postpartum 0036 (01) 0003 0035 (01) 0.005 0034 (01)° 0.006 0027 (01) 003
Age (years) 0.002 (.00) 0 0.003 (.00) 0.07 0.003 (002) 0.05 0.003 (.00) 0.12
Pre-pregnancy BMI (kg/m?) —0.001 (.00) 0.70 —0.002 (.00) 0.35 —0.004 (.00) 0.15 —0.002 (.00) 0.55
Weight change (kg) —0.002 (.00) 0.13 —0.002 (.00) 0.07 —0.002 (.00) 0.06 —0.002 (.00) 0.08
SBP (mmHg) 0.001 (.00) 0.04 0.001 (.00) 0.04 0.001 (.00) 0.03
Inter-adventitial diameter 0.026 (.01) 0.02 0.017 (.01) 0.17
Log HOMA-IR —-0.028 (01) 0.03

“Linear mixed models

PModel 1: Adjusted for age & pre-pregnancy BMI. Model 2: Model 1 plus SBP. Model 3: Model 1 plus weight. Model 4: Model 1 plus weight change. Model 5:
Model 1 plus SBP and weight change. Model 6: Model 5 plus inter-adventitial diameter. Model 7: Model 6 plus HOMA-IR

“Different from second trimester at p < .05. “Different from third trimester at p <.05

BMI is body mass index. SBP is systolic blood pressure. Weight change is from pre-pregnancy weight. § represents change in millimeters
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statistically significantly associated with either carotid
measure (data not shown).

Discussion

Among our participants with normal first pregnancies,
CCA IMT thickened late in pregnancy and remained
thickened at 2.7 years postpartum; IAD, however, in-
creased throughout pregnancy and returned to early
pregnancy levels, postpartum. Although our results mir-
ror those described in two classic studies [7, 8], our
study is the first to follow women for more than 1 year
postpartum. With more participants (i.e., 43) than those
studies [7, 8] combined, our study establishes statistically
significant changes in CCA IMT and IAD. While a re-
cent study did not demonstrate that CCA IMT was in-
creased in the 3rd trimester, it assessed women earlier in
the trimester than we did [10]. Our results demonstrate
that unhealthy change in CCA IMT is partially explained
by changes in IAD and weight—not atherogenic meta-
bolic changes.

An increase in CCA IMT beginning late in pregnancy
and persisting postpartum beyond 2 years, in addition to
lifestyle changes involved with parenthood and
socio-economic profile of women with large families,
could help explain the greater CVD risk that occurs for
women of high parity [1, 3]. Greater IMT is a risk factor
for CVD because thickened arteries are 1) less capable
of responding to changes in blood pressure [25] and 2)
more prone to atherosclerosis [26]. Although studies
have identified greater CCA IMT in women of higher
parity [6, 27-29], the cause remains unknown. However,
we observed thicker CCA IMT among our participants
more than 2 years after childbirth, which suggests that
the acute negative effect of pregnancy on CCA IMT may
persist and could serve as a risk factor for CVD.

The observed changes in CCA IMT and IAD are con-
sistent with the literature concerning hemodynamic
changes in pregnancy and the effect of hemodynamic
changes on arteries [30-34]. Importantly, we provide
serial measures in pregnancy to characterize this vascu-
lar remodeling and evaluate concomitant metabolic
markers. Vascular remodeling is largely due to
hemodynamic factors. Arterial walls adapt to maintain
homeostasis between the two main stresses of blood
flow: shear and tensile stress. First, shear stress is the
frictional force of blood flowing along the arterial wall.
Increased shear stress causes blood vessels to increase in
diameter [30—32]. Cardiac output increases early in the
1st trimester of pregnancy [33] and peaks at 30-60%
above the non-pregnant level in the late 2nd or early 3rd
trimester [33]. Increased cardiac output should increase
IAD resulting from increased shear stress, as our results
demonstrate. Second, tensile stress is the force of blood
perpendicular to the arterial wall, and this force
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increases as arterial diameter increases, which causes ar-
terial walls to thicken [30, 34]. CCA IMT would thicken
during pregnancy as IAD increases, to normalize arterial
wall stresses, as our results confirm [25].

In contrast to the effects of body weight and change in
IAD, the metabolic changes during pregnancy that may
be considered atherogenic in non-pregnant adults (i.e.,
increased total cholesterol, LDL-c, triglycerides,
HOMA-IR, and hsCRP) do not explain the increased
IAD and CCA IMT that we observed. As expected, we
observed an association between higher hsCRP and
greater IAD. Without pregnancy, higher hsCRP concen-
trations are associated with greater carotid IMT [35-37],
which is associated with greater IAD. However, in our
study, hsCRP concentrations did not explain the ob-
served changes in IAD. Our finding that higher triglycer-
ide concentrations were associated with smaller IAD
[12] was unexpected, because this relationship differs
from that observed in non-pregnant adult women.

Triglyceride concentrations increase dramatically during
healthy pregnancy to support fetal growth, and no accepted
threshold value exists for what constitutes high triglyceride
concentrations in pregnancy [24]. However, triglyceride
concentrations can be excessive in pregnancy, as triglycer-
ide concentrations in the upper percentiles have been asso-
ciated with preeclampsia and preterm birth [38—40]. Both
high triglyceride concentrations and smaller IAD indeed
could be associated with less healthy pregnancies. Our re-
sults suggest that paradigms of CVD prediction may not be
applicable to the wellness state of pregnancy.

Our study benefited from the use of a highly valid and
reproducible measure of carotid structure (i.e, B-mode
ultrasonography), and high participant retention (i.e., 98%)
in the initial study. We also collected serial vascular and
biomarker measures during and after pregnancy, which
strengthens this study, but the lack of pre-pregnancy mea-
sures poses a limitation. Limitations of the study are
largely due to the rapidly changing hormonal and
hemodynamic milieus of pregnancy and the postpartum
period. Because the hemodynamic changes of pregnancy
begin as early as 5 weeks of gestation [33], our 1st trimes-
ter values may not represent a true pre-pregnancy base-
line. For example, thinning of the CCA IMT may have
occurred before we could assess it. Similarly, because most
participants (94%) were breastfeeding at the first postpar-
tum visit, their hormonal and cardiovascular status had
not attained new postpartum “normal” status. CCA IMT
may regress after weaning. Our results also might not re-
flect those for women who formula-feed. Additionally, at
the second postpartum visit, participants exhibited a vary-
ing number of subsequent pregnancies, which makes in-
terpretation difficult. However, our results are consistent
with those of the Cardiovascular Risk in Young Finns
study, which found that young women who gave birth
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over a 6-year period had greater progression of CCA IMT
than those who had not [6], and with epidemiologic stud-
ies showing greater CCA IMT in midlife women of higher
parity [27-29]. Moreover, although our largely white,
well-educated participants do not represent all first-time
pregnant women in the United States, our study provides
valuable baseline data against which arterial remodeling in
other demographic groups can be assessed.

Future work should follow a life course approach, and
seek to enroll women during the preconception period
to obtain a true baseline and then follow them through
at least a several month period after weaning. Retention
for the postpartum visits is critical. Additional studies
should explore vascular adaptation to pregnancy in
women in subsequent pregnancies, from different racial
and ethnic groups, and with higher BMI. Collection of
serum folate levels might provide valuable insights into
the role folate deficiency during pregnancy plays in dif-
ferences in vascular adaptation.

Conclusions

We found that IAD increased throughout a healthy first
pregnancy and decreased by 8 weeks postpartum. In
contrast, postpartum CCA IMT thickening persisted for
more than 2 years. These adaptations can be explained—
partially—by pregnancy-related changes in weight and
IAD; moreover, they are not substantially explained by
changes in metabolic measures. Therefore, our results
suggest that pregnancy represents a unique setting of
rapid physiologic changes that maintain homeostasis
during a period of acute stress.

Understanding normal vascular adaptation to preg-
nancy can not only engender an improved understand-
ing of the physiology of pregnancy complications, but
also better identify women at risk for complications early
in pregnancy. If it persists, the greater CCA IMT de-
tected postpartum may help explain the higher CVD risk
in women of higher parity.
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