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Abstract

Background: Application of latent variable models in medical research are becoming increasingly popular. A latent
trait model is developed to combine rare birth defect outcomes in an index of infant morbidity.

Methods: This study employed four statewide, retrospective 10-year data sources (1999 to 2009). The study cohort
consisted of all female Florida Medicaid enrollees who delivered a live singleton infant during study period. Drug
exposure was defined as any exposure to Antiepileptic drugs (AEDs) during pregnancy. Mothers with no AED exposure
served as the AED unexposed group for comparison. Four adverse outcomes, birth defect (BD), abnormal condition of
new born (ACNB), low birth weight (LBW), and pregnancy and obstetrical complication (PCOC), were examined and
combined using a latent trait model to generate an overall severity index. Unidimentionality, local independence,
internal homogeneity, and construct validity were evaluated for the combined outcome.

Results: The study cohort consisted of 3183 mother-infant pairs in total AED group, 226 in the valproate only
subgroup, and 43,956 in the AED unexposed group. Compared to AED unexposed group, the rate of BD was
higher in both the total AED group (12.8% vs. 10.5%, P < .0001), and the valproate only subgroup (19.6% vs. 10.
5%, P < .0001). The combined outcome was significantly correlated with the length of hospital stay during
delivery in both the total AED group (Rho = 0.24, P < .0001) and the valproate only subgroup (Rho = 0.16, P = .01).
The mean score for the combined outcome in the total AED group was significantly higher (2.04 ± 0.02 vs. 1.88 ± 0.01,
P < .0001) than AED unexposed group, whereas the valproate only subgroup was not.

Conclusions: Latent trait modeling can be an effective tool for combining adverse pregnancy and perinatal outcomes
to assess prenatal exposure to AED, but evaluation of the selected components is essential to ensure the validity of the
combined outcome.
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Keypoints

� AEDs have significant effects on all four component
birth outcomes, and as well as the combined
outcome.

� Valproate has significant effects on two out of four
component outcomes, and no association with the
combined outcome.

� Latent Trait Modeling is an effective tool to
combine rare birth defect outcomes.

� Evaluation of selected components is essential to
ensure the validity of the combined outcome.

Background
Birth defects (BDs), involving major congenital malfor-
mation (MCM) and minor anomaly (MA) are the lead-
ing causes of infant mortality, morbidity, and years of
potential life lost. In the USA, the association of infant
BDs and pregnancy and obstetrical complications
(PCOCs) with maternal exposure to antiepileptic drugs
(AEDs) has been investigated extensively [1–3]. How-
ever, the rare occurrence of BDs, abnormal condition of
new born (ACNBs), and PCOCs limits the power of
most published studies, and makes study results incon-
clusive [4–6]. A joint model for combining individual
outcomes is proposed to improve the efficiency and
power of BD studies [7].
Latent variable models have increasingly been applied

in medical research, including measurement of quality
of life, diagnostic testing, survival analysis, and joint
modeling of longitudinal data [8]. Latent variables are
unobserved variables that can only be assessed indir-
ectly by observable manifest variables. A latent variable
model is a statistical approach that uses a set of observ-
able manifest variables to derive one or more unobsersa-
ble variables. In latent variable model with a latent trait
setting, the manifest variables are discrete, including
dichotomous, nominal, or ordinal variables, whereas, the
latent variables are continuous variables and can be
assumed as normally or log-normally distributed [9]. An
important assumption for latent variable model is the
“local independence”, defined as that the manifest vari-
ables are conditionally independent upon a given latent
variable, and the relationship among the manifest variables
is fully explained by the latent variable [10]. A latent vari-
able model in a latent trait setting was developed for this
study to combine individual BD outcomes and generate
an infant morbidity index [11]. This model combines four
infant morbidity outcomes and generates a continuous
index representing the infant’s propensity for morbidity
[11]. Application of this model to combine rare adverse
pregnancy and perinatal outcomes in drug safety studies
may increase statistical power and improve efficiency of
studies investigating low prevalence sequelae.

A debate remains over the use of combined or indi-
vidual outcomes in drug safety studies. A combined
outcome may lead to incorrect results and threaten the
validity of the study if the components are selected
inappropriately [12, 13]. Therefore, the combined out-
come must be evaluated in terms of conceptualization
of the composite outcome [12], and appropriate proper-
ties of the latent variable, such as local independence,
construct validity and reliability [14].
The objective of this study is to apply a latent trait

model to generate a valid combined outcome (adverse
perinatal and pregnancy outcome; APO) to assess the
overall adverse pregnancy and perinatal risks for mothers
and infants exposed to AEDs.

Methods
Data sources
This study used four statewide, retrospective 10-year
databases: Florida Medicaid claims, Florida Birth Vital
Statistics, Florida Birth Anomalies, and Florida Hospital
Discharge Inpatient and Outpatient records (January 1,
1999–December 31, 2009).

Study population
This study includes all female Florida Medicaid enrollees
who delivered a live singleton infant between April 1,
2000 and December 31, 2009. Exclusion criteria for
maternal-infant pairs are: mothers with dual eligibility
for Medicare, HMO, or private insurance; mothers hav-
ing multiple births (twins or higher order); mothers with
diabetes mellitus (ICD-9 codes: 249.x, 250.x, 790.29, or
use of any anti-diabetics during baseline), hypertension
(ICD-9 codes: 401.x, 416.x, 796.2, 997.91, 459.3, or anti-
hypertensive drug use during baseline), or HIV pre-
pregnancy (ICD-9 codes: 042, 079.53, V08, V01.79,
795.71, or use of any antiretroviral therapy); infants
who were twins, triplets, quadruplets or more; infants
with birth weight lower than 350 g or higher than
6000 g; mothers or infants with critical information
missing (e.g., birth weight, demographics, or medical
information).

Study design
The index date is the infant’s birth date. The drug expos-
ure window was defined as the preceding 9-month preg-
nancy period after the first day of the last menstrual
date. A six month baseline period before the first date of
the last menstrual date was utilized to determine the
baseline demographic and clinical characteristics. BD
outcomes were detected 0–365 days after live birth.

Exposure
Drug exposure was determined from Medicaid phar-
macy claims using national drug codes. Two drug
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exposure groups, valproate and AEDs (including valpro-
ate), were employed to develop two scenarios with dif-
ferent patterns of association with the four component
outcomes. Valproate use was defined as prescriptions
dispensed for valproate, sodium valproate, or divalproex.
AEDs included: carbamazepine, ethosuximide, felbamate,
gabapentin, lamotrigine, levetiracetam, oxcarbazepine,
phenobarbital, phenytoin, pregabalin, primidone, tiaga-
bine, topiramate, valproate, and zonisamide.
The birth anomalies are related to exposure time dur-

ing pregnancy: [15] MCM associates with teratogen
exposure in the first trimester [16], and MA and LBW
relate to the maternal drug exposure in the third tri-
mester [15, 17]. Therefore, maternal drug exposure
during the entire pregnancy can affect the combined
outcome. The prenatal drug exposure window was
established as the period of 14 days before the first day
of the mother’s last menstrual period to the infant’s
birth date. The drug exposure was defined as any one
dose of the drugs listed above dispensed during the ex-
posure window, including which drug was dispensed
prior to the exposure window and its days of supply
covers at least one day of the exposure window. Adding
14 days prior to the pregnancy takes into account the
conception period and the residual effects of AEDs.
Sensitivity analysis was conducted to examine the ef-
fects of different drug exposure windows on the com-
bined outcome.

Component outcomes
We investigated four adverse pregnancy and infant out-
comes: BD (involving MCM and MA), abnormal condi-
tion of new born (ACNB), LBW, and PCOC from
multiple data sources. The operational definition for
each component outcome was listed in Additional file 1:
Table S1. MCMs and MAs were collected for 365 days
following birth using the 9th edition of the International
Classification of Diseases-Clinical Modification (ICD-9
CM) code (740–759.9) from Florida Hospital Discharge
Inpatient and Outpatient data. It has been confirmed
that Hospital Discharge data, along with other Children’s
Medical Services diagnostic information, efficiently en-
hanced case ascertainment for BD cases from Florida
Birth Vital Statistics data [18–20]. ACNB and birth
weight were obtained from Florida Birth Vital Statistics.
The common conditions of ACNBs include anemia,
birth injury, fetal alcohol syndrome, hyaline membrane
disease, and assisted ventilation. Birth weight was cate-
gorized into four levels: Extremely Low Birth Weight
(ELBW, 350–999 g), Very Low Birth Weight (VLBW,
1000–1499 g), Low Birth Weight (LBW, 1500–2499 g)
and Normal Birth Weight (NBW, 2500–5999 g). PCOCs
were identified either from Florida Birth Vital Statistics
data or using ICD-9-CM and Current Procedural

Terminology codes from Medicaid inpatient and out-
patient claims data depending upon the extent of the
validity and reliability of these data sources as reported
in previous studies [21–25]. Gestational hypertension,
preeclampsia, and eclampsia were identified using ICD-
9-CM codes from hospital discharge data [22, 23]. Pre-
term birth was operationally defined as gestational age
less than 37 weeks [24]. Gestational age was computed
from the infant birth date and mother’s last menstrual
period. To identify obstetrical conditions, we defined
cesarean delivery and forceps or vacuum extractor deliv-
ery from either birth certificates or ICD-9-CM codes in
hospital discharge data, if it was missing in the birth cer-
tificates. Postpartum hemorrhage was identified solely
using ICD-9-CM codes in hospital discharge data due to
poor validity of birth certificate data on pregnancy com-
plications and obstetric events [25].
Selected component outcomes were evaluated for

similarity of importance, frequency rate, and treatment
effect. The importance of the component outcome was
assessed by computing Spearman correlations between
individual outcomes and a clinically meaningful end-
point, defined as infant’s length of hospital stay following
delivery [26].

Reference group and covariates
A reference group, defined as infants with no maternal
exposure to any AEDs during pregnancy and termed
“AED unexposed group”, was selected for the estimation
of treatment effects of the combined and component
outcomes. The potential confounding factors were con-
trolled using propensity score matching techniques.
Previous studies have documented that common risk
factors for adverse maternal and infant outcomes include
socioeconomic status, infant gender, maternal age, race,
BMI, smoking, alcohol consumption, parity, and drug
exposure during pregnancy [27–30]. Significant teratogens
such as alcohol and tobacco were controlled for during
treatment effect assessment [31–36]. Other medical indi-
cations documented as teratogens in previous studies were
also controlled in this study [37, 38]. Demographic charac-
teristics were identified from birth certificates, whereas
co-morbidities or co-medications during pregnancy were
identified using ICD-9-CM and National Drug Codes
from Hospital Discharge data.

Combining outcomes using latent trait modeling
The statistical inference and mathematical algorithm
for the model have been described elsewhere [39]. An
important assumption of the model is “local independ-
ence”, defined as an independence of manifest out-
comes conditioned on latent variables [11]. Estimated
Generalized Nonlinear Least Squares estimation was
employed to obtain the parameters involved in the
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latent trait model [11, 40]. The derivative process for
the combined outcome is as follows:

Step 1. Calculate initial estimates of the model
parameters. First, we selected initial estimates to
make the iteration process converge. We obtained 32
independent levels by combining 3 dichotomous
component outcomes: BD (Yes/No), ACNB (Yes/No),
PCOC (Yes/No), and 1 polytomous component
outcome: Birth Weight (BW): 2500 ~ 5999 g, 1500 ~
2499 g, 1000 ~ 1499 g, 350 ~ 999 g. The frequencies
and proportions for each level of the combination of
four component outcomes were calculated and utilized
to deduce the initial estimates of the model parameters.
Step 2. Derive the final estimates of the model
parameters. Using the set of initial values and the
modified Gauss-Newton algorithm, final estimates
of the model parameters were obtained. The modified
Gauss–Newton algorithm was run in SAS Proc IML,
starting from the initialized value at iteration 0, until
the difference of the last two estimates was less than
10−9. All final parameters were estimated from the
iteration process.
Step 3: Calculate the conditional probabilities given
the latent variable S for each component outcome.
Substituting the final estimates into the latent trait
model, we calculated expected probabilities and counts
for each level of the combination of four component
outcomes.
Step 4: Derive the combined outcome, the severity
index of adverse perinatal and pregnancy outcome
(APO). Substituting final estimates and conditional
probabilities into the latent trait model, we further
obtained the posterior distribution of latent variable S,
and the mean of the posterior distribution (ŝ). The final
estimate, APO, is a rescaled ŝ, to adapt for
measurement of severity of health status.

Evaluation of combined outcome
Local independence of four component outcomes was
assessed using Yen’s Q statistics [41]. Validity and reli-
ability of the combined outcome were evaluated using
factor analysis and Spearman correlation [42, 43].

Statistical analysis
Continuous variables were compared using a student t
test, and categorical variables were examined using a
chi-square test. Spearman correlation was calculated
for discrete data, and Pearson correlation was calcu-
lated for continuous variables that are normally distrib-
uted. Multivariate logistic modeling was used to obtain
propensity scores and assess the effects of drug use for
each component outcome. Latent trait modeling was

employed to combine four component outcomes into a
severity index.
Statistical analysis was conducted using SAS 9.3 (Cary,

NC). P < 0.05 was considered a statistically significant
difference, except where P < 0.025 was deemed signifi-
cant after Bonferroni correction for two comparisons.

Results
After applying all inclusion and exclusion criteria, the
final study cohort consisted of 3183 mother-infant pairs
in the AED exposure group, 226 mother-infant pairs in
the valproate exposure subgroup, and 43,956 mother-
infant pairs in the AED unexposed group. A comparison
of the demographic and clinical characteristics of the
three groups is presented in Table 1, and the characteris-
tics of all study populations, as well as missing data,
were presented in Additional file 1: Table S2. The de-
tailed data about AED exposure in pregnant women in
Florida Medicaid has been published in elsewhere [44].
The combined outcome, APO scores were compared

between AED, valproate only, and AED unexposed
group (Fig. 1). The average APO score in the total AED
group was significantly different for AED unexposed
group (Mean ± SE: 2.04 ± 0.02 vs 1.88 ± 0.01, P < .0001),
but not for the valproate subgroup (Mean ± SE: 2.00 ±
0.07 vs. 1.88 ± 0.01, P = 0.1003). The valproate sub-
group (n = 226) was smaller than the total AED group
(n = 3183), which could have affected the statistical re-
sults due to insufficient power.
Figure 2 presents the incidence rates of PCOC, BD

(MCM and MA), and ACNB in three study groups. Com-
pared to AED unexposed group, the total AED exposed
group had significant higher rates on PCOC (36% vs. 28%,
P < .0001) and ACNB (12.1% vs. 7.8%, P < .0001). The
rate of PCOC was not significantly higher in the val-
proate subgroup compared to the AED unexposed
group (34% vs. 28%, P = 0.0509). The valproate sub-
group had the highest rates of BD, significantly
higher than the AED unexposed group (20% vs.
10.5%, P < .0001). ACNB in valproate subgroup was
not different than the AED unexposed group (10.2%
vs. 7.8%, P = 0.1525).
Figure 3 delineates the distribution of four BW cat-

egories (Normal: 2500–5999 g, LBW: 1500 ~ 2500 g,
VLBW: 1000 ~ 1500 g, and ELBW: <1000 g) in three
study groups. The rate of LBW in the total AED ex-
posed group was significantly higher than that of the
AED unexposed group (88.1% vs. 91.6%, 10.6% vs. 6.7%,
0.9% vs. 0.7%, 0.5% vs. 0.99%, P < .0001). The valproate
subgroup did not differ significantly in the distribution
of BW categories from AED unexposed group (88.6%
vs. 91.6%, 10.6% vs. 6.7%, 0.4% vs. 0.7%, 0.4% vs. 0.99%,
P = 0.0752).
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Table 1 Demographic and Clinical Characteristics of Study Participants. Obtained from Florida Birth Vital Statistics or Medicaid
Claims Data

Characteristics Valproate
Sub-group
N = 226

Total AED
Groupa

N = 3183

AED Unexposed
Group
N = 43,956

P Value** P Value***

Maternal age at infant born, Mean ± SD 25.9 ± 6.4 26.5 ± 6.0 24.6 ± 5.2 <.0001 0.0014

Father’s age at infant birth, Mean ± SD 52.1 ± 33.2 47.5 ± 30.7 43.3 ± 29.7 <.0001 <.0001

Mother’s Race, N (%)

White 177 (72) 2200 (69) 20,333 (46) <.0001 <.0001

Black 27 (11) 429 (13) 13,991 (32)

Others 41 (17) 552 (17) 9550 (22)

Father’s Race, N (%)

White 95 (39) 1455 (46) 15,669 (36) <.0001 <.0001

Black 31 (13) 327 (10) 9733 (22)

Others 32 (13) 474 (15) 8024 (18)

Father’s education level, N (%)

Above High School 66 (40) 765 (33) 14,219 (41) <.0001 0.7107

Mother’s previous adverse pregnancy experience, N (%) 1 (0.7) 23 (1) 307 (2) 0.0237 0.3482

Mother’s receipt of any prenatal care, N (%) 143 (99) 2172 (99) 18,590 (98) 0.5571 0.0246

Mother’s total number of prenatal visits, Mean ± SD 11.1 ± 18.2 11.3 ± 16.9 8.8 ± 15.7 <.0001 0.0059

Mother’s marital status, Yes, N (%) 86 (35) 1137 (36) 18,041 (41) <.0001 0.1679

Mother’s parity (previous live births), Mean ± SD 1.1 ± 1.3 1.3 ± 5.1 1.7 ± 3.7 <.0001 <.0001

Mother’s tobacco use, N (%) 74 (31) 936 (30) 7133 (16) <.0001 <.0001

Mother’s average tobacco use, Mean ± SD 4.8 ± 15.9 4.0 ± 13.5 1.7 ± 9.0 <.0001 0.0028

Mother’s alcohol use, N (%) 3 (1) 38 (1) 175 (0.4) <.0001 0.0183

Mother’s education level, N (%)

Above High School 86 (37) 1173 (37) 16,772 (39) 0.0980 0.5377

Infant male gender, N (%) 120 (49) 1549 (49) 19,048 (43) <.0001 0.0001

Mother’s previous gestational diabetes, N (%) 6 (4) 84 (4) 604 (3) 0.1714 0.4170

Mother’s previous gestational hypertension, N (%) 6 (3) 138 (5) 1240 (3) <.0001 0.2559

Mother’s previous cesarean, N (%) 17 (13) 306 (14) 3056 (17) 0.0005 0.1819

Mother’s Epilepsy diagnosis during baseline and pregnancy, N (%) 60 (24) 571 (18) 81 (0.2) <.0001 <.0001

Mother’s Anxiety diagnosis during baseline and pregnancy, N (%) 15 (6) 230 (7) 218 (0.5) <.0001 <.0001

Mother’s Neural Pain diagnosis during baseline and pregnancy, N (%) 0 (0) 27 (0.9) 27 (0.1) <.0001 >.999

Mother’s Bipolar diagnosis during baseline and pregnancy, N (%) 56 (23) 444 (14) 499 (1.1) <.0001 <.0001

Mother’s Depression diagnosis during baseline and pregnancy, N (%) 21 (9) 328 (10.3) 743 (1.7) <.0001 <.0001

Mother’s Migraine diagnosis during baseline and pregnancy, N (%) 12 (5) 96 (3) 173 (0.4) <.0001 <.0001

Mother’s mental disorder diagnoses during baseline and pregnancy, N (%) 90 (37) 1118 (35) 3777 (9) <.0001 <.0001

Mother’s antipsychotic exposure during pregnancy, N (%) 50 (20) 338 (11) 275 (0.6) <.0001 <.0001

Mother’s antidepressants exposure during pregnancy, N (%) 90 (37) 886 (28) 1281 (3) <.0001 <.0001

Mother’s folic acid use during pregnancy, N (%) 150 (61) 1965 (62) 17,948 (41) <.0001 <.0001

Mother’s anxiolytics (including sedatives and hypnotics)
exposure during pregnancy, N (%)

76 (31) 1832 (58) 1452 (3) <.0001 <.0001

Number of hospitalization for seizure during pregnancy,
Median (min, max)

0 (0, 4) 0 (0, 6) 0 (0, 3) <.0001 <.0001

Number of physician visits with seizure diagnoses during pregnancy,
Median (min, max), N (%)

0 (0, 3) 0 (0, 5) 0 (0, 6) <.0001 0.0208
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In Table 2, we further compared the propensity score
adjusted drug effects and clinical importance (defined as
Spearman correlation with the length of hospital stay
during delivery) for each component or combined out-
come in the total AED group or valproate subgroup.
The adjusted drug effects and Spearman correlation with
the length of hospital stay during delivery were signifi-
cant for the total AED group on all four component out-
comes, and for the valproate subgroup on BD and
PCOC, but not for ACNB or LBW. The combined out-
come APO was significantly associated with exposure to
total AED (β ± SE: 0.24 ± 0.03, P < .0001) or valproate
only (β ± SE: 0.32 ± 0.09, P = .0004).
Expected and observed frequencies and percent-

ages of each combination of the four observed out-
comes were enumerated in Additional file 1: Table S3.
Additional file 1: Table S3 also presents the estimated
posterior mean ŝ and final estimate APO for 32 com-
binations of four component outcomes, each of which
is associated with an unique score of APO, ranging
from 1 to 8.

There was no correlation between the four compo-
nent outcomes after controlling for the latent variable.
Thus, local independence of the four component out-
comes was established according to Yen’s Q3 Statistics.
The internal homogeneity was confirmed in all four
component outcomes. They all significantly correlate
with each other and the combined outcome APO.
APO was significantly correlated with the length of
hospital stay during delivery (Rho = 0.27, P < .0001),
and no correlation with infant breast fed status (Rho =
−0.07, P < .0001) indicate that APO was associated
with a well-established health status measure. The
higher the APO score, the longer the hospital stay for
the mothers and infants during delivery.

Sensitivity study
We re-defined the pregnancy period calculating gesta-
tional age +10 day, 20 days, and 30 days to examine the
change in association between AED exposure during
pregnancy and four component outcomes. There were
no significant differences between these time windows.

Table 1 Demographic and Clinical Characteristics of Study Participants. Obtained from Florida Birth Vital Statistics or Medicaid
Claims Data (Continued)

Mother’s infection and parasitic diagnosis during baseline
and pregnancy, N (%)b

30 (12) 355 (11) 2959 (7) <.0001 0.0006

Mother’s antibiotics exposure during pregnancy, N (%) 117 (48) 1418 (45) 13,854 (32) <.0001 <.0001
aBy definition, total AED group includes the patients who used valproate
bInclude including: Virus, Rubella, Cytomegalovirus, HIV, Syphilis, Herpes simplex virus, Toxoplamosis, Varicella virus, Venezuelan equine encephalitis virus,
Phenylketonuria, Hypoxia
**Compared between total AED group and AED unexposed group
***Compared between valproate subgroup and AED unexposed group

Fig. 1 Comparison of Adverse Perinatal and Pregnancy Outcome (APO) Scores between Total AED Group, Valproate Subgroup, and AED
unexposed group. Total AED group includes the patients using valproate
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Discussion
The total AED group was significantly different from the
AED unexposed group on all observed outcomes,
whereas valproate subgroup differed statistically from
AED unexposed group only on BD and PCOC. These

two exposure groups had varied patterns of observed
outcomes that were combined using the latent trait
model. The psychometric properties of the combined
outcome were evaluated and compared among the two
exposed groups and one healthy comparison group. The

Fig. 2 PCOC, Birth Defects (Major and Minor Congenital Malformation), and ACNB in the Total AED Group and Valproate Subgroup, and AED
unexposed group. Total AED group includes patients using valproate. BD: Birth defects. ACNB: Abnormal condition of new born. PCOC:
Pregnancy and obstetrical complication. LBW: Low birth weight

Fig. 3 Distribution of Four Birth Weight Categories in the Total AED Group, Valproate Subgroup, and AED Unexposed Group. The total AED
group includes patients using valproate. ELBW: Extreme Low Birth Weight. VLBW: Very Low Birth Weight. LBW: Low Birth Weight
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four component outcomes were found to be not signifi-
cantly different on the incidence rates. One exception
was PCOC, which had the highest incidence out of the
three component outcomes. However, neither the differ-
ences of AED effects on PCOC nor the correlation be-
tween PCOC and the length of the hospital stay during
delivery was significantly different between the total
AED group and AED unexposed group. Thus, these four
component outcomes exhibited a high level of homo-
geneity and demonstrated the validity of component se-
lection for the AED safety study.
Table 1 provides evidence for a pronounced difference

between the mother-infant pairs exposed to AEDs versus
AED unexposed group and raises a concern that studies
of pregnancy outcome need to control for these differ-
ences. In our study, propensity score was used to adjust
these covariates for drug effect assessment.
Figures 1, 2, and 3 raise concern for combining out-

comes in valproate drug safety studies. Compared to the
AED unexposed group, AED use in the total exposed
group was associated with significant effects on all four
component outcomes, whereas, valproate use was re-
lated to increased BD and PCOC, and had no significant
effect on ACNB and BW. The lack of differences for val-
proate on APO, ACNB and BW may be in part due to
the small sample size of the valproate subgroup. Previ-
ous studies using birth registry data has shown that fetal
valproate exposure is associated with higher rates of BD
than other AEDs. For example, the UK Birth Registry re-
ported a 6.7% rate of major congenital malformations
for valproate, and the North American AED Pregnancy
Registry reported a rate of 10.7% [3, 45]. However, the
incidence of minor abnormalities in our study, 9.1% in
AED unexposed group and 10.7% in the total AED

group, was lower than reported in the literature, 15% to
20% in the general population and 37% in AED exposed
pregnant women [46–50]. Considering the difficulties of
identifying minor abnormalities, under-reporting or mis-
diagnosis of minor abnormalities in claims data might
account for this discrepancy. Given that valproate expos-
ure is not consistently associated with the four compo-
nent outcomes and violates the criteria for component
selection for a composite outcome, a concern is raised
about the validity of combining these four outcomes in a
valproate safety study.
To our knowledge, combining outcomes using a latent

variable model has not been utilized in any pharmaco-
epidemiological studies previously. This model was first
described in 2008 for combining four birth defect out-
comes to construct an infant morbidity index [11]. We
employed the model to assess the comprehensive effects
of AEDs on four adverse perinatal and pregnancy out-
comes in both mothers and infants. Superior to other
composite outcomes, the latent variable model generates a
continuous measure that correlates to the component out-
comes with different levels and takes into account the
comprehensive effects of all component outcomes [11].
The final estimate of the latent variable S^ ranged from

0.08 for normal infant-mother pairs to 0.61 for the
mother-infant pairs with different patterns of BD,
ACNB, PCOC, and ELBW. These estimates are similar
in magnitude to those documented previously [11].
This article is based on a thesis published by one of the

authors in 2013 (http://ufdc.ufl.edu/UFE0046207/00001).

Study limitations
Several limitations should be considered as a consequence
of using linked claims data and the nature of the study.

Table 2 Propensity Score Adjusted Drug Effects, and Importance of Each Component or Combined Outcome in Pregnant Women
Exposed to Total AED or Valproate Only

Component Outcomes Propensity Score Adjusted Drug Effects
(β ± SE, P Value)

Spearman Correlation with the Length
of Hospital Stay during Delivery (95%CI, P Value)

Total AED Group BD 0.34 ± 0.16, P = 0.0356 0.08 (0.05 ~ 0.12, P < .0001)

ACNB 0.60 ± 0.15, P = 0.0001 0.08 (0.04 ~ 0.11, P < .0001)

PCOC 0.70 ± 0.11, P < .0001 0.24 (0.20 ~ 0.27, P < .0001)

LBW 0.10 ± 0.02, P < .0001 0.13 (0.09 ~ 0.16, P < .0001)

APO 0.24 ± 0.03, P < .0001 0.24 (0.20 ~ 0.27, P < .0001)

Valproate Subgroup BD 0.96 ± 0.41, P = 0.0196 0.17 (0.05 ~ 0.29, P = 0.0066)

ACNB 0.67 ± 0.43, P = 0.1223 0.02 (−0.10 ~ 0.15, P = 0.7135)

PCOC 0.99 ± 0.32, P = 0.0019 0.16 (0.03 ~ 0.28, P = 0.0122)

LBW 0.10 ± 0.06, P = 0.0856 0.04 (−0.09 ~ 0.16, P = 0.5640)

APO 0.32 ± 0.09, P = 0.0004 0.16 (0.03 ~ 0.28, P = 0.0121)

Covariates include: mother’s epilepsy diagnosis, mother’s anxiety diagnosis, mother’s bipolar diagnosis, mother’s mental disorder diagnoses, mother’s mental disorder
diagnoses, mother’s infection and parasitic diagnosis, mother's age, father's age, mother’s education level, father’s education level, mother’s total number of prenatal
visits, mother’s parity, mother’s marital status, mother’s previous gestational diabetes, mother’s previous gestational hypertension, mother’s previous cesarean
BD Birth defects, ACNB Abnormal condition of new born, PCOC Pregnancy and obstetrical complication, LBW Low birth weight, APO Adverse Perinatal and
Pregnancy Outcome
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First, by combining MCM, MA, LBW, and PCOC, the la-
tent variable APO is an overall adverse outcome for both
mothers and infants. The association between drug expos-
ure and each individual component outcome is unknown if
latent variable APO is used as a dependent variable in the
model. Second, the power to detect differences in the val-
proate only subgroup is a concern due to small sample size.
The insignificant difference in APO between valproate only
subgroup and health unexposed group might be due to the
inadequate statistical power. Third, MAs might be underes-
timated in this study, which could cause underestimation of
APO score. However, the misclassification of MAs is non-
differential, so it should not affect the assessment of differ-
ences between drug use groups. Finally, this latent variable
model combines manifest outcomes based upon the prob-
ability of occurrence in the study population. The severity
of each outcome is not mathematical weighted in the com-
bining process. Future studies are needed to develop more
advanced statistical models to combine more specific out-
comes based upon not only the probability of occurrence,
but also the severity of each outcome.

Conclusions
This study used a latent trait model to assess adverse
pregnancy and perinatal outcomes in women exposed to
antiepileptic drugs during pregnancy. We recommend
using this latent trait model in other drug studies exam-
ining similarly related component outcomes. If the study
drug, is only weakly associated with any of the selected
component outcomes, the study drug’s effects on the
combined outcome may be diluted and be statistically
non-significant compared to the reference group. Such
an approach is detrimental to any drug safety study as
the results move towards the null and the true terato-
genic effects of the drug can be masked. Hence, evalu-
ation of selected components is essential before a latent
trait model can be used to assess a combined outcome.
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Estimates of Posterior Mean of the Latent Variable Ŝ 632 and the APO by
Combinations of Four Observed Outcomes. (DOCX 23 kb)
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