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Abstract

Background: Leptin and insulin levels are key factors regulating fetal and neonatal energy homeostasis,
development and growth. Both biomarkers are used as predictors of weight gain and obesity during infancy. There
are currently no prediction algorithms for cord blood (UCB) hormone levels using Artificial Neural Networks (ANN)
that have been directly trained with anthropometric maternal and neonatal data, from neonates exposed to distinct
metabolic environments during pregnancy (obese with or without gestational diabetes mellitus or lean women).
The aims were: 1) to develop ANN models that simulate leptin and insulin concentrations in UCB based on
maternal and neonatal data (ANN perinatal model) or from only maternal data during early gestation (ANN prenatal
model); 2) To evaluate the biological relevance of each parameter (maternal and neonatal anthropometric
variables).

Methods: We collected maternal and neonatal anthropometric data (n =49) in normoglycemic healthy lean, obese
or obese with gestational diabetes mellitus women, as well as determined UCB leptin and insulin concentrations by
ELISA. The ANN perinatal model consisted of an input layer of 12 variables (maternal and neonatal anthropometric
and biochemical data from early gestation and at term) while the ANN prenatal model used only 6 variables
(maternal anthropometric from early gestation) in the input layer. For both networks, the output layer contained 1
variable to UCB leptin or to UCB insulin concentration.

Results: The best architectures for the ANN perinatal models estimating leptin and insulin were 12-5-1 while for
the ANN prenatal models, 6-5-1 and 6-4-1 were found for leptin and insulin, respectively. ANN models presented an
excellent agreement between experimental and simulated values. Interestingly, the use of only prenatal maternal
anthropometric data was sufficient to estimate UCB leptin and insulin values. Maternal BMI, weight and age as well
as neonatal birth were the most influential parameters for leptin while maternal morbidity was the most significant
factor for insulin prediction.
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Conclusions: Low error percentage and short computing time makes these ANN models interesting in a
translational research setting, to be applied for the prediction of neonatal leptin and insulin values from maternal
anthropometric data, and possibly the on-line estimation during pregnancy.

Keywords: Mathematical model, Leptin, Insulin, Neonate, Artificial neural network, Umbilical cord blood, Gestational

diabetes, Maternal obesity

Background

The impact of maternal obesity during pregnancy
(maternal overweight/obesity with or without gesta-
tional diabetes mellitus) and its association with an
increased risk of obesity, as well as re-programming
cardiovascular risk, body composition and cardio-
metabolic health in infancy and early adulthood, has
been shown in humans and animal models [1-7]. It
has been demonstrated that human obesity in chil-
dren and adults is associated with elevated serum
levels of an adipokine, the hormone leptin, reflecting
the amount of energy stored in adipose tissue [8, 9].
Leptin was identified as the product of the obesity
(ob) gene [10], which is secreted into the circulation
by large adipocytes, and has been shown to cross
the blood-brain barrier and bind to specific recep-
tors in the hypothalamus to alter the expression of
several neuropeptides that regulate neuroendocrine
function, energy intake and expenditure leading to a
decrease in appetite, reduction of body fat and body
weight [11, 12]. The pancreatic hormone insulin also
acts in the brain as a negative feedback signal for
adipocity. It is also an essential regulator of growth,
increasing fat deposition [13] resulting in a greater
potential for leptin synthesis by stimulating adipo-
cyte ob gene transcription [14]. As well, leptin also
modulates (increases) insulin secretion by pancreatic
B cells [15]. Therefore, leptin and insulin control
glucose metabolism, acting at the peripheral and
central level [16]. During pregnancy, leptin levels
regulate fetal development and growth [17, 18] and
positively correlate in umbilical cord blood (UCB)
with neonatal body weight and fat mass [9]. It has
been demonstrated that UCB leptin concentration
correlates with insulin levels and anthropometric
data (birth weight) only in large for gestational age
neonates, but they do not correlate with maternal
levels [19-21]. Both leptin and insulin biomarkers
are used as predictors of weight gain and obesity
during infancy. Indeed, several studies have shown
that lower cord blood leptin levels predict an
increased weight and length gain, “catch-up” growth,
as well as a higher BMI in infancy (2-3 years) [22-
24]. Yet, in the first months, decreased cord leptin
levels together with gestational diabetes mellitus are

related to a slower weight gain [25]. For insulin, an
inversely relationship was found for weight gain dur-
ing infancy [26]. Therefore, the prediction of cord
blood hormone levels based on anthropometric ma-
ternal and neonatal data using mathematical models
that take into account the high complexity of this
system may be of considerable usefulness. Therefore,
Artificial Neural Networks (ANNs) will be used as a
system biology approach to simulate cord blood hor-
mone levels.

ANNs [27] have been extensively used for the
optimization and modeling of processes, as they are
able to represent the non-linear dynamic interaction
of complex relationships without any assumptions of
the underlying mechanisms [28]. ANNs learn and
test the solution of the problem from a data set [29]
and provide an interpolation for new data. For the
science of medicine, the application of neural net-
works keeps on expanding [30-32], and now repre-
sents a set of methods that have been useful for
solving pediatric problems [33, 34], identifying key
factors such as in fetal growth [35, 36] and diagnos-
ing neonatal diseases [37].

ANN has the ability to predict data such as measuring
biochemical parameters in UCB samples which may be
difficult to obtain otherwise. The objectives of the study
were therefore: 1) to obtain ANN models (feed-forward)
for the prediction of leptin and insulin values in UCB
from neonates exposed to distinct metabolic environ-
ments during pregnancy (defined as obesity with or
without gestational diabetes mellitus or lean women),
based on anthropometric maternal and neonatal charac-
teristics (ANN perinatal model) or from only maternal
data during early gestation (ANN prenatal model) 2), to
examine which parameters, among those analyzed from
the mother and neonate, have the most influence on
neonatal leptin and insulin values by applying a sensitiv-
ity analysis. Essentially, ANN will learn from a database
(maternal and neonatal clinical data as well as biochem-
ical experimental data) from a specified problem (mater-
nal metabolic environment) with a known solution
(UCB leptin and insulin experimental values for training
the model) and then the network, will recreate the sys-
tem of an inherent complex set of data (testing the
model).
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Methods

Study subjects

This study was approved by both the Ethics and Re-
search Committees of the Instituto Nacional de Perina-
tologia “Isidro Espinosa de los Reyes”. Venous umbilical
cord blood samples were collected from 49 cesarean de-
liveries. Samples were centrifuged (for 15 min, at
3500 rpm, room temperature), serum was aliquoted and
stored at —70 °C until assayed. Hemolyzed or lipemic
samples were discarded. Mothers (N =49) were: lean
normoglycemic (initial Body Mass Index, BMI, of 24.3 +
0.4 kg/m?, n = 11), obese (initial BMI of 30.9 + 0.9 kg/m?,
n =23) and obese with gestational diabetes mellitus (ini-
tial BMI of 31.3+0.7 kg/m? n=15). We collected the
following information: maternal morbidity (MM), gesta-
tional age at delivery (GE), initial and final maternal
weight (MWi and MWfT), initial and final BMI (MBMi
and MBM(), maternal height (MH), maternal age (MA),
parity (P), neonatal gender (NG), neonatal birth weight
(NVW), neonatal body length (NH), neonatal head cir-
cumference (NHC), neonatal BMI (NBMI) and 5-min
APGAR score. The age range of the participants was
16-43 years. Exclusion criteria were genetic syndromes,
chromosomal abnormalities, gross placental abnormal-
ities, infections and substance abuse. The main clinical
data are reported in Table 1.

Table 1 Maternal and neonatal clinical data

Mother
Parameters Healthy Obese Diabetic
N =49 11 23 15
Maternal age (years) 25.1 (£3.3) 303 (*1.1) 35 (+1.2)
Maternal initial weight (kg) 583 (£2.1) 742 (x25) 773 (x27)
Maternal final weight (kg) 679 (£2.6) 856 (£3.2) 894 (£3.9)
Maternal height (cm) 1564 157.1 157.3 (1)
(+2.2) (£1.3)
Gestational age at delivery, 388 (x0.2) 38 (+04) 39 (x0.3)
(weeks)
Initial Maternal BMI (kg/m?) 243 (£04) 307 (£08) 313 (x038)
Final Maternal BMI (kg/m?) 27.7 (£05) 347 (+12) 36 (x14)
Parity 1.7 (£03) 27 (£0.2) 26 (+0.3)
Males/Females 5M/6F 7M/8F TTM/11F
Neonatal birth weight (kg) 2.87 2.88 322
(+0.14) (+£0.09) (£0.09)
Neonatal birth body length (cm) 479 (£06) 479 (x04) 483 (+0.7)
Neonatal head circumference 344 (£0.3) 338 (*0.2) 34.7 (x0.3)
(cm)
Neonatal BMI 1245 12.52 13.88
(+£04) (£0.3) (+£04)
5-min APGAR score 9 89 (x0.07) 9 (+0.06)

All values are depicted as Mean +/- SEM
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Leptin and Insulin determination by ELISA

Leptin and insulin from umbilical cord blood samples
were assayed using commercially available ELISA kits
(GenWay, San Diego, CA). The sensitivity of the leptin
assay was 0.1 ng/ml; intra-assay and inter-assay coeffi-
cients of variations were 4.2 and 6.7 %, respectively. The
sensitivity of the insulin assay was 0.3 pU/ml; intra-assay
and inter-assay coefficients of variations were 6.3 and
8.5 %, respectively.

Database

We compared neonates and their mothers with distinct
metabolic environments during pregnancy (defined as
obese, obese with gestational diabetes mellitus or lean
women). Fourteen variables were selected from the en-
tire database for 49 subjects. For the ANN models, an-
thropometric, maternal morbidity (obese, obese with
gestational diabetes mellitus or lean women) and bio-
chemical data (umbilical cord blood leptin or insulin)
were administered.

ANN learning and testing

Back-propagation (BP) algorithm multiple-layer percep-
tron (MLP) architecture was trained and tested by the
input layer, the hidden layer and the output layer (see
Fig. 1). We applied the Log-sigmoid (LOGSIG) and
hyperbolic tangential (TANSIG) transfer functions in the
hidden layer. Both transfer functions were acceptable
however; the hyperbolic tangential performance was
slightly superior. According to [38], TANSIG transfer
function has a better performance which is in agreement
with our result. In the output layer, only the linear trans-
fer function (PURELIN) was employed because the out-
put layer is not normalized. In order to obtain the
optimum model, we began in the hidden layer with one
neuron until the Root Mean Square Error (RMSE) did
not change and the statistical test (slope and intercept
[39]) was approved, as well as we avoided over-fitting
(for a detailed explanation see Additional file 1) and
[40-43]. All calculations were carried out with Matlab
mathematical software (Natick, MS, USA) with the
Neural Network Toolbox for Matlab [40].

The input layer for the ANN perinatal models consisted
of 12 maternal and neonatal variables and the output layer
contained one variable for umbilical cord blood leptin or
umbilical cord blood insulin concentrations. The variables
were: maternal morbidity (MM), gestational age at delivery
(GE), initial and final maternal weight (MWi and MWf¥),
initial and final maternal BMI (MBMi and MBMf), mater-
nal height (MH), neonatal gender (NG), neonatal birth
weight (NW), neonatal body length (NH), neonatal head
circumference (NHC) and neonatal BMI (NBMI) (Table 2).
The input layer for the ANN prenatal models (early gesta-
tion) contained 6 maternal variables (maternal morbidity
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Fig. 1 Recurrent network architecture of the ANN perinatal model and the procedure used for learning neural network for the simulation of
leptin (a) and insulin (b) concentration in umbilical cord blood (UCB) samples
J

(MM), initial maternal weight (MWi), initial maternal BMI
(MBMi), maternal height (MH), maternal age (MA) and
parity, P) and the output layer had one variable for umbil-
ical cord blood leptin or umbilical cord blood insulin con-
centrations (Table 2).

In the learning, to change the weights and biases, we ap-
plied the Levenberg-Marquardt (LM) algorithm as the
learning (training) algorithm allowing to obtain a smaller
RMSE 1[40, 44, 45] (for a detailed explanation see
Additional file 1). The RMSE was calculated from the
experimental values and network predictions (see Fig. 1la
and b).

The experimental database (1 =49) was used to feed
the ANN structure. This database (x;) was randomly

divided into: learning (79 %) and validation (21 %). The
database was then normalized in the range of 0.1 to 0.9
[46] for the input variables and the output variable was
not normalized.

So, the entire input database was scaled to a new value
x; as follows:

0.8 (XiKmin ) 4 (1)
' Xmax_Xmin

Statistical test
In order to confirm the best performance of the ANN
predictions, a linear regression was carried out to obtain
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Table 2 List of experimental variables (clinical and biochemical data) analyzed using ANN to obtain umbilical cord blood leptin and

insulin values: input and output range conditions studied

Input Variables (n =49) Range Output variables Range

Maternal Morbidity, MM Healthy, Obese or diabetic Umbilical cord 0.17-27 (mean 5.1)

Maternal initial weight, MWi (kg) 49-96 (mean 72) blood leptin, (ng/mi)

Maternal final weight, MWf (kg) 55-117 (mean 83) Umbilical cord 0.7-12 (mean 1.9)
blood insulin, (LU/ml)

Maternal height, MH (cm) 149-173 (mean 157)

Maternal initial BMI, MBMi (kg/mz) 22-40 (mean 29.5)

Maternal final BMI, MBMf (kg/mz) 24-42 (mean 33.5)

Gestational age at delivery, GE (weeks) 37-41 (mean 39)

Neonatal gender, NG

Neonatal birth weight, NW (kg) 2.01-4.19 (mean 2.98)

Neonatal birth body length, NH (cm) 45-54 (mean 48)

Neonatal head circumference, NHC (cm) 32-37 (mean 34)

Neonatal BMI, NBMI 10-15 (mean 13)

Parity, P 1-5 (mean 2.3)

Maternal age, MA (years) 16-43 (mean 30)

the slope and intercept from the ANN simulations ver-
sus the experimental database (learning and validation
database), after which we applied a statistical test (slope
and intercept, [39, 47]). This last consists in demonstrat-
ing that the obtained upper and lower intervals of the
slope must be one and the upper and lower intervals of
the intercept must be zero, with a 99.8 % confidence
level according to the Student t-test.

Results

The main umbilical cord blood leptin and insulin experi-
mental values are reported in Table 3 and are in agree-
ment with the study by [48] (as well as [49-51]). Briefly,
obesity exposed neonates had higher UCB leptin levels
compared to not exposed neonates and a trend for in-
creased levels in gestational diabetes exposed neonates.
Gestational diabetes exposed neonates had the highest
values for umbilical cord blood insulin levels than not
exposed or obesity exposed neonates.

Proposed ANN perinatal model

The input variables for the ANN perinatal models were
12 (maternal and neonatal) and were presented to the
general network, in which the final UCB hormone level
prediction corresponded to the output unit: 1 output
variable for UCB leptin or insulin concentration. Figure 2
shows the general scheme of such neural network archi-
tecture for the prediction of UCB leptin (Fig. 2a) and in-
sulin (Fig. 2b) values from perinatal parameters (as
depicted in Fig. 1a and b). 20,000 runs with 100 itera-
tions were applied in each neuron from 1 to 5 neurons
in the hidden layer and the final topology was obtained
for leptin and insulin predictions. As a result, the best

network architecture performance was 12-5-1 for both
models: leptin and insulin (Equations [6-11] and the
weights and biases are reported in Additional file 1: Ta-
bles S1 and S2).

Validation of the ANN perinatal model
Figure 3 depicts the comparison of the experimentally
measured (pxp) and the predicted (snn) UCB leptin
(Fig. 3a) and insulin (Fig. 3b) values for the testing data-
base describing the behavior of the ANN perinatal
model using all data available (inputs).

The comparison of (gxp) and (ann) data through a lin-
ear regression model,

(Leptinann=a + b Leptingxp) and (Insulinagyn=a +b
Insulingyp), showed regression coefficients of R*>0.973
and R*>0.9873 for leptin and insulin, respectively.
Upper and lower values of the statistical test (Table 4)
indicate that the slope included one and the intercept
contained zero, with a 99.8 % confidence level for both
UCB determinations [39, 47]. These results demon-
strated a good correlation between ANN predictions and
experimental values.

Table 3 Umbilical cord blood hormone concentrations

Mother
Parameters Healthy Obese Diabetic
N=49 " 23 15
Leptin (ng/ml) 35 (1) 6.7 (+1.5) 49 (+04)
Insulin (uU/ml) 1.3 (£04) 1.06 (£0.08) 36 (1)




-

Guzman-Bércenas et al. BMC Pregnancy and Childbirth (2016) 16:179 Page 6 of 11
a Input layer Hidden layer Output layer a 30
LeptinANN = 09729 x LeptinEXP + 0.14 /*
55l R%=0973 e |
s
7
P 7
= 201 - |
@
g 15t /// 1
E °
[Leptin] =
9D 10 |
* Learning database
5 o Testing database |
b2
O 1 1 1 1
0 5 10 15 20 25 30
[Experimental leptin]
b 14 T T T T T T
o}
b Input layer Hidden layer Output layer InsulinANN = 1.04 x InsulinEXP - 0.0924 .
12r R2=09873 I
__ 10t .
B
=S
2 8t 1
T
2
S 6f |
£
&,
ar * Learning database 1
[Insulin] o Testing database
2 L 4
0 O 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Fig. 2 The neural network computational ANN perinatal model for
UCB leptin (a) and insulin (b) concentration estimation. The
proposed model involved 12 input variables, 5 neurons on hidden
layer and 1 output variable

Sensitivity analysis of the ANN perinatal model

We used an evaluation process based on the neural net-
work weight matrix and the Garson equation [52, 53] to
obtain the qualitative significance of the input variables
on the predicted UCB leptin and insulin values (for a de-
tailed explanation of Equation [19], see Additional file
1). Figure 4 depicts the relative importance of the calcu-
lated input variables showing that all variables had a
strong effect on leptin (Fig. 4a) and insulin (Fig. 4b) neo-
natal values. In addition, the sensitivity analysis showed
that maternal BMI (28 %, initial and final BMI), neonatal
birth weight (12 %) and maternal weight (11 %) were the
most influential factors controlling umbilical cord blood
leptin concentration, in contrast with maternal

[Experimental insulin]

Fig. 3 The scatter plot of perinatal experimental (open circles) vs.
ANN-predicted values (dark cross) for average UCB leptin (a) and
insulin (b). Experimental (leptingyp and insulinggp) and simulated
(leptinann and insulinayy) data. Dashed line indicates the fitted
simple regression line on scattered points

morbidity (healthy, obese or controlled gestational dia-
betes, 5 %) and neonatal BMI (2 %) that were the less
important factors for estimating UCB leptin levels
(Fig. 4a).

For UCB insulin concentration, maternal morbidity
(healthy, obese or controlled gestational diabetes) ap-
pears to be the critical parameter with a relative import-
ance of 18 %, followed by neonatal body length at

Table 4 Intercept (a) and slope (b) statistical test to leptin and
insulin in the ANN perinatal model

Leptin Insulin

dlower aupper dlower aupper
—0.6321 09118 —0.3411 0.1564
b\ower bupper blower bupper

0.8624

1.0833

0.9564

11156
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delivery (12 %), maternal BMI (6-9 %) and less import-
antly neonatal BMI (5 %) and birth weight (5 %)
(Fig. 4b).

Altogether, these results showed that the ANN
perinatal models succeeded in predicting the experi-
mental results of UCB leptin and insulin concentra-
tion from anthropometric maternal and neonatal
values, as well as revealed a good agreement between
the experimental data and the predicted values.
However, this ANN perinatal models required gesta-
tion and at term information in order to predict
UCB leptin and insulin concentrations. Therefore, a
second ANN model was applied to predict UCB
levels using only inputs from early gestation of the
same database.

a Leptin

Head
circumference _ Neonatal BMI
5% 2%

Maternal

Gestacional age
at delivery
5%

Birth body
lenght
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Maternal height
4%

Insulin
Head Neonatal BMI
o,
circumference 5%
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7%
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6%
Fig. 4 Percentage for the global sensitivity analysis of the 12 input
variables in the ANN perinatal model for UCB leptin (a) and Insulin
(b) values
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Proposed ANN prenatal model

The input variables for the ANN prenatal models (early
gestation) were 6 maternal and 1 output variable for
UCB leptin or insulin concentration. The best neural
network architecture obtained for the prediction of UCB
leptin was 6-5-1 (Fig. 5a) and for UCB insulin, 6-4-1
(Fig. 5b) (The same Equations [6—11 for leptin and 6-10
for insulin] were utilized in the model but the weights
and biases for leptin and insulin simulations are reported
in Additional file 1: Tables S3 and S4). The ANN models
were able to predict UCB leptin and insulin levels from
only anthropometric maternal parameters.

Validation of the ANN prenatal model

Figure 6 depicts the predicted values compared to the
experimental values for leptin (Fig. 6a) and insulin
(Fig. 6b), showing a good capability of the model to
simulate both outputs by describing the behavior of the
UCB levels using only maternal anthropometric infor-
mation from early gestation.

The regression coefficients were R*>0.963 and R*>
0.9824 for leptin and insulin, respectively (Fig. 6). Table 5
depicts intercepts and slopes for the linear regression
model of the ANN prenatal models. Therefore, these

N
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4
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A
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>€ > €

A
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M BMIi
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Fig. 5 The neural network computational ANN prenatal model for
UCB leptin (@) and insulin (b) concentration estimation. The
proposed model involved 6 input variables, 5 neurons on hidden
layer for leptin or 4 neurons on hidden layer for insulin and 1
output variable
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statistical results guarantee the validity of the ANN pre-
natal models with a confidence level of 99.8 % for both
UCB leptin and insulin [39, 47].

Sensitivity analysis of the ANN prenatal model

The same process used for the ANN perinatal models
allowed obtaining the relative importance of the input
variables on the simulated UCB leptin (Fig. 7a) and insu-
lin (Fig. 7b) values in the ANN prenatal models. Fig-
ure 7a shows that maternal age (27 %) and initial
maternal weight (24 %) were the dominant factors for
the prediction of UCB leptin in comparison with mater-
nal morbidity (11 %) and parity (8 %), which were the
less important parameters. For UCB insulin simulation
(Fig. 7b), all maternal characteristics had a strong effect
on insulin values but maternal morbidity (31 %) and ma-
ternal height (25 %) were the predominant parameters
followed by maternal age (11 %) and parity (10 %).
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Fig. 6 The scatter plot of prenatal experimental (open circles) vs.
ANN-predicted values (dark cross) for average UCB leptin (a) and
insulin (b). Experimental (leptin gxp and insulin gxp) and simulated
(leptin ann and insulin 4nn) data. Dashed line indicates the fitted
simple regression line on scattered points
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Table 5 Intercept (a) and slope (b) statistical test to leptin and
insulin in the ANN prenatal model

Leptin Insulin

dlower aupper dlower aupper
0.8508 11131 0.8838 1.0574
b\ower bupper blower bupper
—0.8453 0.9886 —0.2069 03357
Discussion

Four ANNs models were developed to predict neonatal
leptin and insulin concentrations in umbilical cord
blood, based on selected experimental conditions (an-
thropometric and biochemical variables), from gestation
and at term data (ANN perinatal models) or only from
early gestation data (ANN prenatal models). The neo-
natal leptin and insulin parameters were successfully
simulated by applying in all models, a three layered
neural network with 4-5 neurons in the hidden layer,
using a back-propagation algorithm that achieved a low
average error rate (<3 and <4 %, for the ANN perinatal

a Leptin
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Initial maternal w

Initial maternal BMI 14% Maternal height 16%

b Insulin

Parity 10%

Maternal age 11%
Maternal morbidity 31% 9

Maternal height 25%
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Fig. 7 Percentage for the global sensitivity analysis of the 6 input
variables in the ANN prenatal model for UCB leptin (a) and Insulin
(b) values
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models and ANN prenatal models, respectively). The re-
sults obtained by the ANN perinatal models show a high
agreement with experimental results: a good correlation
(R*>0.97) and small error (RMSE >0.0012). High level
of confidence for the ANN perinatal models was con-
firmed with the intercept and slope statistical test
(99 %). Interestingly, the ANN prenatal models, that
takes into account only the early gestation information
(maternal anthropometric parameters), were also able to
estimate leptin and insulin values with a good correl-
ation coefficient (R* > 0.96 for leptin and R* > 0.98 for in-
sulin), a small error (RMSE >0.2) and a confidence level
of 99.8 %. These models consider well-known and sim-
ple to measure input parameters such as: corporal
weight, length and body mass index of the mother at the
beginning and/or end of pregnancy, gestational age at
delivery, gender, weight, body length and head circum-
ference of the neonate at delivery. Therefore, by means
of these ANN models we could be able to obtain any
unknown leptin and insulin variables based exclusively
in anthropometric data.

ANN was, not only capable of establishing mathemat-
ical models estimating neonatal leptin and insulin values
in umbilical cord blood from anthropometric values, but
was also able to identify key maternal and neonatal vari-
ables, which had mathematically consistent biological
relevance for the predicted values. According to the sen-
sitivity analysis of the ANN perinatal models, we found
that maternal BMI and neonatal birth weight were the
most influential parameters for the prediction of neo-
natal leptin values, while maternal metabolic health was
the principal factor for the simulation of neonatal insulin
levels. Interestingly, the sensibility analysis of the ANN
prenatal models (taking into account only early gestation
maternal anthropometric values) showed maternal age
and initial maternal weight had a strong impact on UCB
leptin levels, whereas maternal metabolic health was the
most important parameter for fetal insulin secretion.

These analyses were capable of confirming a major
role of maternal BMI and birth weight for UCB leptin
prediction and maternal metabolic health for insulin
values. Indeed, it has been shown that UCB leptin con-
centration correlates with maternal BMI and neonatal
birth weight by conventional observational and statistical
methods [18-20, 54, 55]. In particular, maternal BMI as
a key factor for UCB leptin levels is in agreement with
the proposed mechanism for leptin during pregnancy. In
fact, the adipose tissue, the placenta and the vascular
endothelium of the mother have been demonstrated as
sites for regulated leptin production in utero [56, 57]
and during pregnancy, leptin has been shown to regulate
protein synthesis, growth and immunity [58].

For UCB insulin values, maternal metabolic health
(healthy, obese or obese with gestational diabetes
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mellitus) appears to be the critical parameter, followed
by neonatal body length. Indeed, gestational diabetes
mellitus exposed neonates had higher umbilical cord
blood insulin levels than not exposed neonates [48, 59],
which was confirmed by the ANN analysis. The fetal
pancreas is the principal source of fetal insulin since ma-
ternal insulin does not cross the blood/placental barrier
[60]. The fact that insulin is higher in gestational dia-
betes mellitus offspring may suggest dysregulation of in-
sulin signaling at birth which is compatible with an
adaptation for elevated maternal glucose levels [61]. Pre-
diction of UCB insulin levels by neonatal body length is
in agreement to insulin’s direct anabolic action. This has
been proposed to be indirectly mediated via leptin, since
UCB leptin levels strongly correlate with UCB insulin
values [21]. Also, it has been hypothesized that fetal in-
sulin stimulates fetal adipocyte leptin production [21].
However, UCB leptin levels did not correlate with UCB
insulin levels in the offspring of obese women with ges-
tational diabetes mellitus.

Limitations and strengths of the ANN models

It is important to acknowledge the limitations of this
study such as the particularly low sample size. However,
adaptive learning algorithms like ANN were able to
overcome this problem of low sample size due to the
training procedure that uses only a part of the database.
It is noteworthy to mention that a study from Street and
cols used a similar size database for their ANN model in
order to identify placental factors for fetal growth [36].
Another limitation of this work is the low test data size.
Further simulations with an increased sample size
should allow improving the ANN models.

In addition, the limits of the modeling are that in
order to predict UCB leptin and insulin concentrations,
morbidity, anthropometric and biochemical parameters
must be placed between the ranges of the input variables
(see Table 2). For example, the ANN perinatal model will
accurately simulate UCB leptin when applied to mothers
with an initial weight (MW,) comprised between 49—
96 kg and an initial BMI (MBMI,) of 22—40 kg/m>.

One of the strengths of this ANN approach is that the
elapsed time to calculate both neonatal parameters is
short which can be applied on-line and that it represents
the dynamic interactions of complex relationships. These
characteristics suggest a possible translational utility of
these ANN models.

Insulin and leptin cord blood levels have been used as
predictor of postnatal growth and weight gain in infancy.
So, the establishment of ANN prenatal models that pre-
dicts these values from maternal anthropometric vari-
ables during gestation, without the need for cord blood
samples, could be helpful to prognosticate infant growth
and permit the possibility of conducting interventions.
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For example, it is tempting to speculate that infants from
obese mothers that had the highest cord leptin values will
probably have the worst of all weight gain but the highest
BMI in infancy, since higher cord blood leptin and gesta-
tional diabetes are related to a slower weight gain and an
increased BMI at 2—3 years [23, 24]. The use of these ANN
models could make easy to follow growth and perhaps esti-
mate the risk of obesity and diabetes in these children.

Conclusions

Low error percentage and short computing time makes this
ANN models attractive to be applied for the prediction of
UCB leptin and insulin values from maternal and neonatal
anthropometric data, and possibly the on-line estimation
during pregnancy, birth and infancy. In particular, the pre-
diction of these hormone values in UCB may be of great
interest to prognosticate infant growth and permit the pos-
sibility of conducting interventions before incurring
costly and time-consuming events, such as neonatal
morbidity. Moreover, the fact that the ANN prenatal
model, based merely on early gestation anthropomet-
ric maternal information, was able to confidently
simulate UCB leptin and insulin levels, make these
particular models an interesting application for fol-
lowing the impact of maternal anthropometrics and
metabolic health on these hormone UCB values and
to predict leptin and insulin values at birth from early
gestation.
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