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Abstract

Background: Some currently available birth weight for gestational age standards are customized
but others are not. We carried out a study to provide empirical justification for customizing such
standards by sex and for whites and blacks in the United States.

Methods: We studied all male and female singleton live births and stillbirths (22 or more weeks
of gestation; 500 g birth weight or over) in the United States in 1997 and 1998. White and black
singleton live births and stillbirths were also examined. Qualitative congruence between gestational
age-specific growth restriction and perinatal mortality rates was used as the criterion for identifying
the preferred standard.

Results: The fetuses at risk approach showed that males had higher perinatal mortality rates at all
gestational ages compared with females. Gestational age-specific growth restriction rates based on
a sex-specific standard were qualitatively consistent with gestational age-specific perinatal mortality
rates among males and females. However, growth restriction patterns among males and females
based on a unisex standard could not be reconciled with perinatal mortality patterns. Use of a single
standard for whites and blacks resulted in gestational age-specific growth restriction rates that
were qualitatively congruent with patterns of perinatal mortality, while use of separate race-specific
standards led to growth restriction patterns that were incompatible with patterns of perinatal
mortality.

Conclusion: Qualitative congruence between growth restriction and perinatal mortality patterns
provides an outcome-based justification for sex-specific birth weight for gestational age standards
but not for the available race-specific standards for blacks and whites in the United States.
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Background

Birth weight-specific perinatal mortality curves among
male and female births intersect to produce a paradox:
overall perinatal mortality rates and perinatal mortality
rates at lower birth weights are relatively higher among
male births, while at higher birth weights perinatal mor-
tality rates are relatively higher among female births [1].
This puzzling observation reflects a general phenomenon
that is also seen when birth weight- and gestational age-
specific perinatal mortality curves are contrasted across
race, plurality, maternal smoking status, parity, altitude,
country, and other determinants of birth weight and ges-
tational age [2-14]. We have previously presented a solu-
tion for this paradox of intersecting mortality curves that
involves a reformulation of perinatal and neonatal mor-
tality risk [15-20]. This reformulation, based on the
fetuses at risk approach, eliminates the crossover phe-
nomenon and provides several new insights into perinatal
health issues.

In this paper, we demonstrate the paradoxical crossover of
birth weight-specific perinatal mortality curves among
male and female births and show how this phenomenon
is resolved using the fetuses at risk approach. We also
explore issues related to fetal growth restriction among
males and females using the same approach. This latter
issue is particularly important from a conceptual and clin-
ical standpoint because the current literature on birth
weight for gestational age standards (sometimes referred
to as fetal growth standards) is confusing. Some standards
provide unisex reference values [21-24], several are sex-
specific [1,25-34] and yet others provide both sex-specific
and unisex reference values [35-38]. Of equal concern is
the fact that several standards are customized for different
races [1,25,27-29], parity [25,27,29,34,36], plurality
[24,30] and other characteristics [27], while others are not
[21-23,26,31-33,35,37].

We used the fetuses at risk approach to contrast growth
restriction and perinatal mortality rates among males and
females in order to provide empirical justification for sex-
specific (vs unisex) birth weight for gestational age stand-
ards. We also constructed and compared gestational age-
specific growth restriction and perinatal mortality curves
among whites vs blacks in order to evaluate currently
available birth weight for gestational age standards (single
standard vs separate standards for whites and blacks in the
United States).

Methods

We used data on all reported live births and stillbirths in
the United States in 1997 and 1998 (National Center for
Health Statistics perinatal mortality data file for all states
and the District of Columbia for 1997 and 1998). Live
births and infant death records for these years have been
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previously linked and gestational duration has been calcu-
lated based on the last menstrual period (LMP). Missing
or inconsistent information on gestational age has been
imputed or replaced in a small fraction (approximately 7
percent) of records by the National Center for Health Sta-
tistics (Hyattsville, Maryland). Gestational age was
imputed from the month and year of the LMP when the
exact LMP day was missing [39]. LMP-based gestational
age information was replaced by the clinical estimate [40]
when the former was inconsistent with birth weight or
when there was no information on LMP (approximately 5
percent of births).

Analyses were restricted to singleton live births and still-
births >22 weeks gestational age and >500 g birth weight
in order to eliminate potential problems arising from
regional differences in birth registration. Male and
females births were first contrasted in terms of their gesta-
tional age and birth weight distributions. Birth weights
were categorized into 500 g intervals for this purpose
(500-999 g, 1,000-1,499 g, 1,500-1,999 g and so on).
Birth weight-specific perinatal mortality rates, calculated
within these birth weight categories, were computed as
per convention by dividing the number of stillbirths and
early neonatal (0 to 6 days) deaths in any birth weight cat-
egory by the number of total births (stillbirths and live
births) in that birth weight category. Similarly, gestational
age-specific perinatal mortality rates among male and
female births were contrasted, with rates computed by
dividing perinatal deaths at any given gestation by the
number of total births at that gestation.

The numbers of fetuses at risk for stillbirth and early neo-
natal death at each gestation were then used to calculate a
second set of perinatal mortality rates. Under this fetuses
at risk formulation, the stillbirth rate at 28 weeks gestation
was computed by dividing the number of stillbirths at 28
weeks by the number of live births and stillbirths at 28 or
more completed weeks of gestation. This implies that
fetuses who delivered at 29, 30, 31 and 32 or more weeks
gestation were also at risk of stillbirth at 28 weeks [15-
19,41-44]. The fetuses at risk formulation applies equally
to early neonatal death since a fetus (unborn) at 28 weeks
gestation is at risk of birth and early neonatal death at that
gestation [15,17,18]. Thus gestational age-specific perina-
tal/neonatal mortality rates under this formulation were
calculated with perinatal/neonatal deaths at any gesta-
tional age in the numerator and the fetuses at risk of peri-
natal/neonatal death at that gestation in the denominator.
This represents a survival analysis model with censoring
of subjects (fetuses) at death or birth which ever occurs
earlier (for a schematic depiction of the survival analysis
model, see reference 18). In this model, neonatal death
(and, in other contexts, serious pregnancy-related mor-
bidity such as cerebral palsy [16]) is assigned to the point
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of birth since the responsible pathologic event/process is
present at birth [18]. Gestational age-specific 'birth rates'
(i.e., the number of births at any particular gestational
week divided by the number of fetuses at risk of birth at
that gestation) and rates of gestational age-specific labor
induction/cesarean delivery were also estimated using the
fetuses at risk approach [15-18].

We also examined gestational age-specific patterns of fetal
growth restriction using the fetuses at risk approach
[15,17-19]. The number of small-for-gestational age
(SGA) live births at each gestation was divided by the
number of fetuses at risk at that gestation in order to
obtain the gestational age-specific SGA rate (or the gesta-
tional age-specific fetal growth restriction rate). SGA live
births were identified using the 10th percentile cut-off
from a birth weight for gestational age standard based on
live births in the United States [38]. Gestational age-spe-
cific SGA rates were calculated using both the unisex and
sex-specific 10th percentile values provided by this stand-
ard [38] to evaluate how well patterns of gestational age-
specific growth restriction correspond with patterns of
gestational age-specific perinatal mortality. This evalua-
tion was premised on the belief that fetal growth restric-
tion patterns should be qualitatively congruent with
gestational age-specific perinatal mortality patterns. Such
an expectation is consistent with clinical understanding
and studies which show that growth restricted fetuses
have a substantially higher perinatal mortality than
appropriate-for-gestational age fetuses. For instance, Wil-
liams et al [1] showed that perinatal mortality at each ges-
tational week was much higher among growth restricted
births at the 10t percentile of birth weight for gestational
age (eg., perinatal mortality rate 138 per 1,000 total births
at 34-35 weeks) compared with appropriate-for-gesta-
tional age births at the 50th percentile of birth weight for
gestational age (eg., perinatal mortality rate 27 per 1,000
total births at 34-35 weeks). We also examined gesta-
tional age-specific growth restriction differences among
males and females using rate ratios (eg., growth restriction
rate among males at 35 weeks gestation divided by growth
restriction rate among females at 35 weeks gestation) and
contrasted these with gestational age-specific differences
in stillbirth and neonatal mortality rates (also using rate
ratios eg., stillbirth rate among males at 35 weeks divided
by the stillbirth rate among females at 35 weeks; early
neonatal death rate among males at 35 weeks divided by
the early neonatal death rate among females at 35 weeks).
This was done to ascertain the relationship between pat-
terns of growth restriction and patterns in the two compo-
nents of perinatal mortality (stillbirth and early neonatal
death).

Comparisons of male and female gestational age-specific
growth restriction and gestational age-specific perinatal
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mortality patterns were contrasted with similar compari-
sons according to maternal race. Specifically, live births
and stillbirths >22 weeks of gestational age and >500 g
birth weight in the United States in 1997 and 1998 were
used to compare gestational age-specific growth restric-
tion and perinatal mortality rates among whites vs blacks.

Identification of SGA live births among blacks and whites
was carried out using a single standard for both races [38]
and also a race-specific standard [29]. As with contrasts
between males and females, the contrasts between whites
and blacks were restricted to singleton births.

Differences in rates were assessed using rate ratios and
excess risks. Taylor series 95% confidence intervals were
calculated on all rate ratios. All p values presented are two-
sided. Sensitivity analyses were carried out to assess the
potential effect of gestational age errors on patterns of
growth restriction and perinatal mortality among males
and females. Specifically, we reassessed growth restriction
and mortality patterns among males and females after
excluding all births for whom menstrual-based gesta-
tional age was either imputed or replaced by the clinical
estimate of gestation.

Results

There were 3,905,694 singleton male births in the United
States in 1997 and 1998 (=22 weeks gestational age and
>500 g birth weight). The low birth weight (<2,500 g) rate
among male live births was 5.5%, and 10.5% of male live
births were born preterm (<37 weeks). There were
3,723,153 female births in the United States during the
same period and relative to males, female live births had
a higher rate of low birth weight (6.4%, p < 0.0001) but a
lower rate of preterm birth (9.4%, p < 0.0001). Males had
a 14% (95% confidence interval 12 to 16, p < 0.0001)
higher perinatal mortality than females; perinatal mortal-
ity rates among males and females were 6.78 and 5.95 per
1,000 total births, respectively.

The gestational age distribution of male live births (Figure
1) was 'shifted to the left' relative to female live births (p
< 0.0001), while the birth weight distribution of females
was markedly ‘'shifted to the left' relative to that of male
live births (p < 0.0001). Birth weight-specific perinatal
mortality rates (conventional calculation, perinatal deaths
per 1,000 total births in a given birth weight category)
showed the crossover paradox with males having rela-
tively higher rates of perinatal death at birth weights
<4,000 g, while females had relatively higher perinatal
mortality rates at higher birth weights (Figure 2a). In con-
trast, gestational age-specific perinatal mortality rates
(conventional calculation, perinatal deaths per 1,000
total births at any gestational week) showed similar
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Figure |
Gestational Age and Birth Weight Distributions of Male and Female Singleton Live Births. Gestational age (la) and birth weight
(Ib) distributions of male and female singleton live births >22 weeks and >500 g in the United States, 1997 and 1998.
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Conventional Calculation: Birth Weight- and Gestational Age-Specific Perinatal Mortality Rates among Male and Female Births.
Conventional calculation: birth weight-specific (2a) and gestational age-specific (2b) perinatal mortality rates per 1,000 total
births among male and female singleton births in the United States, 1997 and 1998.
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Table I: Gestational Age-Specific Numbers and Rates of Perinatal Death among Male Singleton Births, United States, 1997 and 1998.

Gestational age Stillbirths Live births Early neonatal Perinatal mortality Fetuses at risk Perinatal mortality
deaths rate ()T rate (2)1
28 648 6,808 263 122.2 3,841,944 0.24
29 579 8,100 221 92.2 3,834,488 0.21
30 701 11,297 230 77.6 3,825,809 0.24
31 668 14,339 208 58.4 3,813,811 0.23
32 809 20,242 209 48.4 3,798,804 0.27
33 786 30,140 212 323 3,777,753 0.26
34 88l 51,673 298 224 3,746,827 0.31
35 915 86,166 338 14.4 3,694,273 0.34
36 1,033 154,986 354 89 3,607,192 0.38
37 1,144 308,629 394 5.0 3,451,173 0.45
38 1,173 626,450 470 2.6 3,141,400 0.52
39 1,122 925,764 541 1.8 2,513,777 0.66
40 897 848,527 431 1.6 1,586,891 0.84
41 469 444,468 237 1.6 737,467 0.96
>42% 454 292,076 229 2.3 292,530 233
Total} 17,680 3,888,014 8,800 6.8 3,905,694 6.78

T Total births at each gestational week served as the denominator for perinatal mortality rates (1), while perinatal mortality rates (2) were
calculated using fetuses at risk as the denominator (see text). All rates are expressed per 1,000.

* Large increase in perinatal mortality (2) at >42 weeks is partly because the period of risk exceeds | week (see also Figures 3-5).

I All gestational ages, including those >22 weeks and those with missing gestational age.

Table 2: Gestational Age-Specific Numbers and Rates of Perinatal Death among Female Singleton Births, United States, 1997 and
1998.

Gestational age Stillbirths Live births Early neonatal Perinatal mortality Fetuses at risk Perinatal mortality
deaths rate (1)1 rate (2)1
28 614 5,838 184 123.7 3,665,497 0.22
29 530 7,000 158 91.4 3,659,045 0.19
30 611 9,742 179 76.3 3,651,515 0.22
31 578 12,493 173 57.5 3,641,162 0.21
32 632 17,168 195 46.5 3,628,091 0.23
33 654 25,282 187 324 3,610,291 0.23
34 747 44,275 221 21.5 3,584,355 0.27
35 796 75,238 234 13.5 3,539,333 0.29
36 874 133,386 286 8.6 3,463,299 0.33
37 927 267,501 337 4.7 3,329,039 0.38
38 1,071 563,676 361 2.5 3,060,611 0.47
39 1,072 885,523 419 1.7 2,495,864 0.60
40 926 851,848 376 1.5 1,609,269 0.8l
41 505 455,313 222 1.6 756,495 0.96
>42* 443 300,234 198 2.1 300,677 2.13
Total} 15,537 3,707,616 6,614 6.0 3,723,153 5.95

T Total births at each gestational week served as the denominator for perinatal mortality rates (1), while perinatal mortality rates (2) were
calculated using fetuses at risk as the denominator (see text). All rates are expressed per 1,000.

* Large increase in perinatal mortality (2) at >42 weeks is partly because the period of risk exceeds | week (see also Figures 3-5).

FAIl gestational ages, including those >22 weeks and those with missing gestational age.
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Figure 3

Fetuses at Risk Approach: Gestational Age-Specific Birth, Labor Induction and Perinatal Mortality Rates among Male and
Female Births. Fetuses at risk approach: Gestational age-specific birth rates (3a, primary Y-axis), labor induction rates (3b, pri-
mary Y-axis) and perinatal mortality rates (3a and 3b, secondary Y-axis) among male and female singleton births in the United
States, 1997 and 1998.
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mortality patterns among males and females (Tables 1
and 2), with males having a slightly higher perinatal mor-
tality rate at some gestational ages (Figure 2b).

Gestational age-specific perinatal mortality rates calcu-
lated using the fetuses at risk approach showed that peri-
natal mortality rates increased with increasing gestational
age (Figure 3). Males had a higher perinatal mortality than
females at virtually all gestational ages (Tables 1 and 2).
Gestational age-specific 'birth rates' (Figure 3a), gesta-
tional age-specific labor induction rates (Figure 3b) and
gestational age-specific labour induction and/or cesarean
delivery rates (data not shown) were marginally (but con-
sistently) higher among pregnancies with males as com-
pared with pregnancies with females (Figure 3). For
example, the birth rate among males at 35 weeks gestation
was 23.6 per 1,000 fetuses at risk, while that among
females at 35 weeks was 21.5 per 1,000 fetuses at risk (rate
ratio 1.10, 95% confidence interval 1.09 to 1.11, p <
0.0001). The labour induction rates at 35 weeks among
males and females were 3.6/1,000 and 3.1/1,000 fetuses
at risk, respectively; rate ratio 1.10, 95% confidence inter-
val 1.07 to 1.13, p < 0.0001.

Figure 4 compares gestational age-specific rates of fetal
growth restriction among males and females. When
growth restriction was determined using a sex-specific
standard, growth restriction rates among males were
higher than growth restriction rates among females at all
gestational ages and this pattern was qualitatively congru-
ent with sex differences in perinatal mortality (Figure 4a).
For instance, males at 35 weeks gestation had an 8 percent
(95% confidence interval 5 to 11, p < 0.0001) higher
growth restriction rate than females at the same gesta-
tional week (sex-specific standard) and this was qualita-
tively congruent with a 17 percent (95% confidence
interval 7 to 27 percent, p = 0.0003) higher perinatal death
rate among males compared with females at 35 weeks ges-
tation. On the other hand, when a unisex standard was
used to identify growth restricted live births, males had a
lower rate of growth restriction at all gestational ages and
this was not qualitatively congruent with the higher gesta-
tional age-specific pattern of perinatal mortality among
males (Figure 4b). For instance, at 35 weeks gestation,
growth restriction rates determined using a single stand-
ard for both males and females showed that males had a
20 percent (95% confidence interval 18 to 22 percent, p <
0.0001) lower rate of growth restriction compared with
females (not consistent with the 17% higher perinatal
mortality rate).

Overall growth restriction rates based on a sex-specific
standard showed that rates were 3% (95% CI 2 to 3)
higher among males. Stillbirth and early neonatal mortal-
ity differences (rate ratios) among male vs female births
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both favored females (Table 3), although the mortality
differences were much larger for early neonatal mortality
(27%, 95% CI 23 to 31) than for stillbirth (8%, 95% CI 6
to 11). Gestational age-specific differences in growth
restriction between males and females based on a sex-spe-
cific standard (eg., rate ratio at 35 weeks 1.08, 95% CI
1.05 to 1.11, Table 3) tended to be similar to gestational
age-specific differences in stillbirth rates (eg., rate ratio at
35 weeks 1.10, 95% CI 1.00 to 1.21, Table 3), while dif-
ferences in gestational age-specific early neonatal mortal-
ity tended to be larger (eg., rate ratio at 35 weeks 1.38,
95% CI 1.17 to 1.63, Table 3). Sensitivity analyses carried
out to examine the potential effect of gestational age
errors (by excluding births among whom gestational age
was imputed or for whom the clinical estimate of gesta-
tion was used) showed essentially the same patterns of
growth restriction and perinatal mortality among males
and females.

Patterns of gestational age-specific growth restriction
among whites and blacks could not be reconciled with
patterns of gestational age-specific perinatal mortality,
when growth restriction was defined by a race-specific
standard (Figure 5a). Growth restriction rates defined
using the race-specific birth weight for gestational age
standard showed a crossover with blacks having signifi-
cantly higher growth restriction rates than whites below
39 weeks and significantly lower growth restriction rates
at 39 weeks and over. For instance, rates of growth restric-
tion as defined by the race-specific standard were signifi-
cantly lower among blacks compared with whites at 40
weeks gestation (rate ratio 0.89, 95% confidence interval
0.88 to 0.91, p < 0.0001), despite a significantly higher
perinatal mortality rate among blacks at 40 weeks gesta-
tion (rate ratio 1.43, 95% confidence interval 1.29 to
1.58, p < 0.0001). On the other hand, rates of gestational
age-specific growth restriction were qualitatively congru-
ent with patterns of gestational age-specific perinatal mor-
tality when growth restriction among blacks and whites
was defined using a single birth weight for gestational age
standard (Figure 5b). For example, at 40 weeks gestation,
the significantly higher rate of perinatal death among
blacks was consistent with the significantly higher rate of
growth restriction seen among blacks when a single
standard was used to define growth restriction (rate ratio
for growth restriction at 40 weeks among blacks vs whites
2.06, 95% confidence interval 2.04 to 2.09, p < 0.0001).
Growth restriction (based on a single standard for both
races) and perinatal mortality rates were substantially
higher among births to black mothers as compared with
births to white mothers at all gestational ages (Figure 5b).

Discussion
We have confirmed previous observations that birth
weight-specific perinatal mortality rates among male and
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Figure 4

Fetuses at Risk Approach: Gestational Age-Specific Growth Restriction and Perinatal Mortality Rates among Male and Female
Births. Fetuses at risk approach: Gestational age-specific fetal growth restriction (primary Y-axis) and perinatal mortality rates
(secondary Y-axis) among male and female singleton births, with growth restriction rates based on sex-specific (4a) and unisex
(4b) birth weight for gestational age standards, United States, 1997 and 1998.
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Table 3: Gestational Age-Specific Rates of Fetal Growth Restriction Based on a Sex-Specific Standard [38] and Differences in Growth
Restriction, Stillbirth and Early Neonatal Mortality Among Males and Females, Singleton Births, United States, 1997 and 1998.

Gestational age

Fetal growth restriction

Stillbirth rate
ratio(males vs

Early neonatal
mortality rate

females) ratio(males vs
females)
Males Females Rate ratio
(males vs
females)
Number Rate t Number Rate t
28 631 0.2 502 0.1 1.20 1.0l 1.36
29 764 0.2 660 0.2 I.10 1.04 1.33
30 1,165 0.3 923 0.3 1.20 1.10 1.23
31 1,539 0.4 1,369 0.4 1.07 I.10 I.15
32 2,141 0.6 1,866 0.5 1.09 1.22 1.02
33 3,294 0.9 2,946 0.9 1.07 I.15 1.08
34 5,691 1.6 5,098 1.5 1.07 1.13 1.29
35 8,934 25 7,922 23 1.08 I.10 1.38
36 15,813 4.6 13,910 4.2 1.09 1.13 I.19
37 30,029 9.1 25,180 79 I.15 .19 1.13
38 55,401 18.5 49,599 17.1 1.09 1.07 1.27
39 84,257 357 79,440 339 1.05 1.04 1.28
40 75,983 52.8 74,504 511 1.03 0.98 I.16
41 36,956 62.6 34,214 56.5 I.11 0.95 I.10
242 14,679 100.5 14,551 96.7 1.04 1.05 I.19
Totalf 337,277 9l1.6 312,684 89.3 1.03 1.08 1.27

T Gestational age-specific growth restriction rates (based on a sex-specific standard [38]) were calculated by dividing the number of small-for-
gestational age live births (<10t percentile) at any gestational age by the number of fetuses at risk at that gestation. Stillbirth and early neonatal
mortality rates were also calculated using fetuses at risk as the denominator.

I All gestational ages >22 weeks, except for growth restriction indices which were based on live births between 28 and 42 weeks.

female births exhibit a puzzling crossover paradox [1].
Gestational age-specific perinatal mortality rates among
males and females were similar when mortality rates were
calculated per convention (using total births at a
particular gestation for calculating the perinatal mortality
rate). On the other hand, use of the fetuses at risk formu-
lation [15-19,41-44] showed that males have a
consistently higher perinatal mortality rate at all gesta-
tional ages. Further, our study shows that gestational age-
specific growth restriction and perinatal mortality rates
both increase with advancing gestational age. Gestational
age-specific rates of growth restriction among males and
females are qualitatively congruent with gestational age-
specific perinatal mortality patterns when growth restric-
tion rates are based on a sex-specific birth weight for ges-
tational age standard. Use of a single standard for males
and females results in a gestational age-specific pattern of
growth restriction that cannot be reconciled with gesta-
tional age-specific differences in perinatal mortality
among males and females.

In contradistinction, contrasts between whites vs blacks
show that use of a single birth weight for gestational age
standard for both races is justified, while the use of a cur-
rently available race-based standard is not defensible. Ges-
tational age-specific growth restriction patterns among
whites vs blacks based on a single standard correspond
qualitatively to patterns of gestational age-specific perina-
tal mortality among whites and blacks (Figure 5).

Birth weight for gestational age standards are modeled
after infant and child growth standards and assume that
fetal growth restriction occurs at a constant rate through-
out pregnancy. This assumption is implicit in the use of
the same, fixed cut-off (eg., the 31 percentile or the 10th
percentile cut-off of birth weight for gestational age) for
identifying fetal growth restriction at all gestational ages.
Our findings challenge the former assumption and show
that in fact fetal growth restriction rates are better viewed
as increasing with advancing gestational age (Figures 4
and 5). This contention is supported by the finding that
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Figure 5

Fetuses at Risk Approach: Gestational Age-Specific Fetal Growth Restriction and Perinatal Mortality Rates among White and
Black Births. Fetuses at risk approach: Gestational age-specific fetal growth restriction (primary Y-axis) and perinatal mortality
rates (secondary Y-axis) among white and black singleton births, with growth restriction rates based on a race-specific stand-
ard (5a) and on a single birth weight for gestational age standard (5b), United States, 1997 and 1998.
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gestational age-specific growth restriction rates follow the
pattern of gestational age-specific perinatal mortality
rates. Recent studies which show that the incidence of
hypertensive disorders and chorioamnionitis increases
with increasing gestational age provide at least a partial
explanation for the gestational age-dependent rise in fetal
growth restriction and perinatal mortality rates [45,46].

Table 3 shows that differences in stillbirth rates between
males and females are smaller than differences in early
neonatal mortality rates. The phenomenon of higher neo-
natal mortality differentials (relative to stillbirth
differentials) between males and females has been previ-
ously noted [1] and is probably a consequence of obstetric
intervention. Obstetric intervention (i.e., early delivery
through labor induction and/or cesarean delivery) is typi-
cally prompted by signs of fetal compromise and will be
more likely among pregnancies with male fetuses given
the male fetuses' greater biological vulnerability. Such
intervention leads to a reduction in the stillbirth differen-
tial, while having a smaller (or the opposite) effect on
neonatal mortality differences between males and
females. This explanation is supported by the higher rates
of labor induction (and labour induction and/or cesarean
delivery) observed among pregnancies with male fetuses
(Figure 3b). Differences in rates of congenital anomalies
that are lethal after birth and more frequent in males (eg.,
X-linked recessive conditions) may partly contribute to
this phenomenon as well.

The slightly higher rate of gestational age-specific labor
induction/cesarean delivery among males relative to
females is encouraging since it suggests that the small
mortality risk difference between males and females is
already being addressed by modern obstetric practice
(despite male sex not being formally identified as a factor
in decision making related to obstetric intervention). This
may be a consequence of the use of sex-specific birth
weight for gestational age standards or sex-specific ultra-
sound-based fetal growth standards and, as mentioned,
probably also reflects higher rates of suspected fetal com-
promise among pregnancies with male fetuses. Despite
the marginally higher rates of labor induction among
pregnancies with male fetuses, however, mortality differ-
ences persist. Research should be directed at ascertaining
whether excess neonatal mortality among males can be
successfully reduced through explicit recognition of male
sex as a factor for altering the threshold for obstetric
intervention.

Although contemporary birth weight for gestational age
standards have substantial face validity [1,47,48], their
development would benefit from greater empirical sup-
port and validation. For instance, it should be feasible to
refine standards based on empirically observed (cause-

http://www.biomedcentral.com/1471-2393/5/3

specific) patterns of birth weight-specific perinatal mortal-
ity and serious neonatal morbidity (at each gestational
age). This would represent an improvement over current
standards which rely heavily on theoretical assumptions
(eg., normality of birth weight at any given gestational
age) and insufficiently on relevant empirical information
(namely, perinatal morbidity and mortality related to
growth restriction). Such cross-sectional information can-
not address fetal growth in continuing pregnancies, how-
ever; the latter requires longitudinal information which is
ideally obtained through ultrasonographic measure-
ments. On the other hand, estimation of fetal weight
through ultrasonography [31,49] needs to be improved
[50,51] and diagnostic methods for identifying fetal
growth restriction have tended to rely on other indicators
of growth restriction besides estimated fetal weight.

Our study has limitations that are typical of studies that
use large data bases. Errors in gestational age information
are inevitable, although the magnitude of these errors is
likely to be similar among male and female births. The
overall rate of missing gestational age was low, however
(0.9 percent among white live births and 0.8 percent
among black live births). Our estimates of gestational age-
specific fetal growth restriction rates are approximate. Ide-
ally, estimation of the incidence of fetal growth restriction
requires identification of fetal growth restriction on a lon-
gitudinal basis among continuing pregnancies [18]. The
alternative measure of gestational age-specific growth
restriction employed in our study represents an index of
'revealed' fetal growth restriction [18]. This approxima-
tion is unlikely to be a factor that seriously distorts
patterns of gestational age-specific growth restriction since
faltering of fetal growth typically leads to a spontaneous
delivery or delivery following obstetric intervention.
Other potential limitations of our study include the use of
gestational age information on stillbirths. The gestational
age at delivery of a stillbirth typically overestimates the
gestational age at the time of fetal death, although this dif-
ference is unlikely to be large in recent years. Further, both
male and female stillbirths would have been affected by
this measurement error to a similar extent.

Conclusion

The fetuses at risk approach resolves the paradox of inter-
secting perinatal mortality curves. Male births have higher
rates of gestational age-specific perinatal mortality than
female births. There is empirical justification for using
sex-specific standards of birth weight for gestational age
since gestational age-specific growth restriction patterns
based on such standards correspond qualitatively with
gestational age-specific perinatal mortality patterns. On
the other hand, a single birth weight for gestational age
standard for whites and blacks in the United States
appears more appropriate than currently available race-
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specific standards since gestational age-specific growth
restriction patterns among blacks and whites (based on a
single standard) are qualitatively congruent with gesta-
tional age-specific patterns of perinatal mortality.
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