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Abstract

variants (CNVs) involved in the etiology of PE.

PE genetics.

polymorphism

Background: Specific genetic contributions for preeclampsia (PE) are currently unknown. This genome-wide
association study (GWAS) aims to identify maternal single nucleotide polymorphisms (SNPs) and copy-number

Methods: A genome-wide scan was performed on 177 PE cases (diagnosed according to National Heart, Lung and
Blood Institute guidelines) and 116 normotensive controls. White female study subjects from lowa were genotyped
on Affymetrix SNP 6.0 microarrays. CNV calls made using a combination of four detection algorithms (Birdseye,
Canary, PennCNV, and QuantiSNP) were merged using CNVision and screened with stringent prioritization criteria.
Due to limited DNA quantities and the deleterious nature of copy-number deletions, it was decided a priori that
only deletions would be selected for assay on the entire case-control dataset using quantitative real-time PCR.

Results: The top four SNP candidates had an allelic or genotypic p-value between 10 and 10, however, none
surpassed the Bonferroni-corrected significance threshold. Three recurrent rare deletions meeting prioritization criteria
detected in multiple cases were selected for targeted genotyping. A locus of particular interest was found showing an
enrichment of case deletions in 19q13.31 (5/169 cases and 1/114 controls), which encompasses the PSG11 gene
contiguous to a highly plastic genomic region. All algorithm calls for these regions were assay confirmed.

Conclusions: CNVs may confer risk for PE and represent interesting regions that warrant further investigation. Top SNP
candidates identified from the GWAS, although not genome-wide significant, may be useful to inform future studies in

Keywords: Copy-number variant, Genome-wide association study, Microarray analysis, Preeclampsia, Single nucleotide

Background

Preeclampsia (PE) is a pregnancy-specific complication
which affects 2-7% of pregnancies [1]. Recognized as a
leading cause of maternal and fetal morbidity and mor-
tality worldwide, PE is characterized by new onset hyper-
tension and proteinuria with or without other multi-
system disorders. Family-based studies in several geo-
graphically and ethnically diverse populations have
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demonstrated the familial nature of PE [2-5]. Despite the
evidence for a genetic basis of PE, its exact etiology
remains undefined.

Numerous candidate genes have been implicated in the
pathogenesis of PE; particularly genes involved in immune
maladaptation, placental ischemia, and increased oxidative
stress [6]. Recent research found that the complement sys-
tem may play a role in PE [7]. While sequence variants in
over 70 genes have been investigated, the majority of stud-
ies have focused on only a handful of these genes [8,9].
Hundreds of candidate gene studies have been conducted,
but findings have been inconsistent [10]. Selection of can-
didate genes for investigation is limited by an incomplete
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understanding of biological processes involved in the
pathogenesis of PE [8]. Furthermore, most existing studies
examining the genetic basis of PE have focused on single
nucleotide polymorphisms (SNPs), which explain only a
small proportion of the overall heritability of complex
disorders.

Copy-number variants (CNVs), another type of genetic
variation, may contribute to the missing heritability of
complex disorders such as PE [11]. An estimated 13% of
the human genome is believed to be copy-number vari-
able [12]. These variants range from less than one kilo-
base (kb) to several megabases (Mb) in size and include
deletions and amplifications [13]. Functionally relevant
CNVs can alter gene function or regulation by various
proposed mechanisms, including alteration of gene dos-
age, gene interruption, gene fusion, and alteration of a
gene’s position relative to regulatory elements. CNVs
may induce phenotypic changes. The phenotypic conse-
quences of these alterations depend on the nature and
extent of the deleted or duplicated DNA sequence
[14,15]. The disruption of genes by CNVs has been
linked to numerous complex disorders, including neuro-
psychiatric and autoimmune disorders [16]. However, to
date there have been no reports examining an associ-
ation between CNVs and PE.

Given the current limited state of knowledge on the
genetics of PE, a genome-wide association study (GWAS)
was conducted to identify potential PE-associated SNPs
and CNVs using a case-control study design. This is the
first reported GWAS on PE.

Materials and methods

Ethics statement

This study was approved by the University of Iowa Insti-
tutional Review Board and the Yale University Human
Investigation Committee.

Study population

Female subjects were recruited through the SOPHIA
study—a case-control study designed to examine the roles
of maternal-fetal human leukocyte antigen and sexual his-
tory in PE [17]. A total of 3078 primaparous mothers who
gave birth in Iowa from August 2002 to May 2005 were
identified from electronic birth certificates provided by
the Iowa Department of Public Health as potential sub-
jects. Potential PE cases were selected from primiparous
women who were “check-box positive” on their infant’s
birth certificate for pregnancy-induced hypertension or
eclampsia. Potential controls were a random sample of
primiparas who had no indication of hypertension on
their infants birth certificate. Willing subjects were
screened for initial eligibility and excluded based on any
of the following criteria: age <18 years at delivery; non-
English-speaking; history of an autoimmune disease
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(e.g. systemic lupus erythematosus, insulin-dependent dia-
betes mellitus, rheumatoid arthritis); recurrent spontaneous
abortion (>3 sequential pregnancy losses); chronic hyper-
tension; plural gestations; major congenital anomalies; in-
fant death; or seriously ill infant. The final case status of all
eligible and consenting subjects was determined using clin-
ical information collected through extensive telephone
interview and chart review. Buccal samples were self-
collected and mailed by the study subjects using methods
of collection, storage, and packaging that would maximize
DNA vyields from cytobrushes [17].

Figure 1 summarizes the subject selection process.
Based on information from interview and chart review,
274 PE cases and 190 normotensive controls were ascer-
tained. The final number of cases and controls, who
additionally consented to future genetic studies, was 225
and 150, respectively. Due to concerns about population
stratification and the small numbers of subjects of other
races/ethnicities, only white females were included in
the present study (n=196 cases and 137 controls).
Among these subjects, a total of 177 cases (mean age:
27.53+5.01 vyears) and 116 controls (mean age:
27.54 +5.17 years) had sufficient DNA for genome-wide
SNP genotyping.

Phenotype definition

PE was defined according to National Heart, Lung and
Blood Institute (NHLBI) guidelines as having de novo
hypertension (systolic blood pressure 2140 mmHg or dia-
stolic blood pressure >90 mmHg on two or more occa-
sions at least six hours apart after the 20th week of
gestation) and accompanying proteinuria (urine protein
concentration =300 mg/L, equivalent to dipstick protein
test value of 1+ from two or more specimens collected at
least four hours apart; one or more urinary dipstick values
of 2+ near the end of pregnancy; one or more catheterized
dipstick value of 1+ during delivery hospitalization; or a
24-hour urine collection with protein >300 mg). Potential
cases were excluded if pre-existing hypertension could not
be ruled out, only partial criteria for PE were met, or a de-
finitive diagnosis could not be made due to incomplete in-
formation. Potential controls were excluded if their
medical records included any indication of high blood
pressure (systolic blood pressure >140 mmHg or diastolic
blood pressure 290 mmHg) in the prenatal or postpartum
period, two or more high blood pressure readings in the
intrapartum period, or any indication of proteinuria dur-
ing pregnancy (1+ on dipstick protein testing on two or
more occasions).

GWAS genotyping

Buccal cell DNA was extracted from cytobrush samples
using Puregene DNA Tissue Kits (Gentra Systems, Min-
neapolis, MN) following the manufacturer’s protocol,
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Figure 1 Flow chart of the SOPHIA study subject recruitment process.
A

with minor modifications [17]. After extraction, DNA
samples were assessed for quality by running on a 1%
agarose gel. Genotyping was performed at the Rockefel-
ler University Genomics Resource Center using Affyme-
trix Genome-Wide Human SNP Array 6.0 (Affymetrix,
Santa Clara, CA) according to the manufacturer’s
recommended protocol.

Sample quality was assessed using Dynamic Model al-
gorithm and genotyping calls were generated using Bird-
seed algorithm in Genotyping Console 4.0 (Affymetrix).
Samples with a quality control (QC) call rate (based on a
subset of 3022 SNP markers) less than the default
threshold of 86% were excluded (n=1). This recom-
mended QC call rate threshold is well correlated with

Birdseed call rate and concordance (>99.5%) based on
HapMap data (Affymetrix, 2012; personal communica-
tion). The mean QC call rate across the remaining sam-
ples (n=292) was 94.4%.

SNP analysis
Mitochondrial SNPs, SNPs that were monomorphic or
contained only heterozygotes, SNPs that significantly
deviated from Hardy-Weinberg equilibrium, or SNPs with
call rates less than 95% among cases or controls were
deemed to have failed QC and excluded (see Additional
file 1: Table S1 for SNP genotyping data quality summary).
Individual SNPs were tested for both allelic and geno-
typic associations by calculating Fisher’s exact p-values
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and using a strict Bonferroni-corrected 0.05 genome-
wide significance threshold of 7.1x10® (a=0.05/
705,969). Presence of residual population stratification
was assessed by performing a principal components ana-
lysis using the EIGENSTRAT method in EIGENSOFT
version 3.0 (http://genepath.med.harvard.edu/~reich/
Software.htm) [18].

CNV detection

Four algorithms served to identify CNVs from the
genome-wide SNP data. Three algorithms, Birdseye [19],
PennCNYV June 16, 2011 version [20], and QuantiSNP ver-
sion 2.3 beta [21], implement a hidden Markov model that
integrates multiple sources of information, including log R
ratio (LRR; a measure of total signal intensity of probes)
and B allele frequency (BAF; a measure of relative inten-
sity ratio of allelic probes), to infer CNV calls for individ-
ual genotyped samples. An example of LRR and BAF plots
for a region called and confirmed as a deletion is shown in
Figure 2. The last algorithm, Canary [19], utilizes a one-
dimensional Gaussian mixture model to detect common
CNVs. Birdseye and Canary were run as part of the Bird-
suite version 1.5.5 toolset. The unified output of Birdseye
and Canary was used for further analysis and these two
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algorithms are hereafter referred to as one algorithm,
Birdsuite. Detection algorithms were run under default
settings for Affymetrix SNP 6.0 microarray using LRR
and/or BAF data from all SNP and copy-number probes
in all 293 genotyped subjects. All samples were processed
in one batch. The presence of CNVs on the X chromo-
some is of interest as epigenetic investigation found a link
between X chromosome inactivation and PE among white
females [22]. Thus, both autosomal and X chromosomes
were analyzed.

A large number of algorithm calls may be indicative of
low sample quality [23]. To assess sample quality, the
right-skewed distribution of sample calls was first log-
transformed for each algorithm. A sample was consid-
ered to have failed QC and removed from analysis (n=8
cases and 2 controls) if it had an extremely large number
of CNV calls, defined as having a value greater than
three standard deviations from the mean of the log-
transformed number of CNV calls per sample for at least
one of the algorithms.

A modified CNVision program [24] was used to
merge, analyze, and annotate the outputs of Birdsuite,
PennCNV, and QuantiSNP. The merge function of
CNVision identifies and merges CNV calls made by all
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Figure 2 Representative LRR and BAF plots for a genomic region called and assay confirmed as a deletion. LRR and BAF values for each
probe are represented as dots. The vertical grey bars delineate the boundaries of the algorithm-detected deletion (chr13:83.004-83.045 Mb). LRR
values for the SNP and copy-number probes in the deletion (red dots) drop to the -0.5 region and BAF values for the SNP probes cluster
randomly around 0 or 1. In comparison, the flanking normal chromosomal regions have LRR values centered around zero with three BAF clusters
(blue dots).
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algorithms that have overlap of >1 base pair and deter-
mines the percentage of call overlap by algorithm within
this region. Merged CNV calls were excluded
(n=210,583) when at least one of the following condi-
tions were met: 1) <50% overlap between two algo-
rithms and <25% overlap among three algorithms; 2)
less than ten consecutive SNP or copy-number probes;
or 3) both deletion and amplification calls made by dif-
ferent algorithms in the same genomic region in a given
sample.

CNV prioritization

An objective prioritization strategy was employed to
generate a list of candidate CNV regions most enriched
among cases. Odds ratios (ORs) were calculated for this
purpose. Therefore, CNVs with ORs > 2.5, comparing PE
cases and normotensive controls, and CNVs called in >3
cases and absent in controls were selected for additional
consideration. Recurrent regions overlapping centro-
meric and telomeric regions according to PennCNV
definitions or containing less than five consecutive
microarray probes were excluded. The normal expected
frequency of these shortlisted CNVs was assessed in an
independent comparison group of white female controls
(n=774) genotyped using Affymetrix SNP 6.0 microar-
rays from a GWAS of schizophrenia (NCBI study acces-
sion: phs000021.v3.p2) [25]. As the schizophrenia study
controls were not screened with the same criteria as
SOPHIA controls, it was expected that 2-7% of these
women who become pregnant would develop PE. How-
ever, assuming a positive relationship exists, this selec-
tion bias may in fact attenuate the association, providing
a conservative estimate of risk for the prioritization
process. CNVs were detected in the same manner as the
PE cases and controls; however, samples were batch-
processed by 96-well plate. The same sample QC and
merged CNV call criteria were applied. Regions were
further considered when ORs comparing PE cases and
schizophrenia study controls were positive with their
95% confidence intervals excluding the null value (OR=1)
or when calls were absent among controls.

As DNA quantities were very limited, it was decided a
priori that only copy-number deletions would be
selected for assay confirmation due to their generally
more deleterious nature relative to amplifications [26].
Regions to be assayed in the entire case-control dataset
using quantitative real-time PCR (RT-qPCR) were
selected based on the presence of genes at or near
(<100 kb) the CNV, the availability of DNA for samples
displaying the CNV, and having the majority of samples
without the deletion be copy normal. LRR and BAF plots
were also visually inspected for a clear change in probe
hybridization intensity and zygosity, respectively, to en-
sure patterns consistent with calls.
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Copy-number genotyping

Copy-number genotyping was performed using TagMan
Copy Number Assays (Applied Biosystems, Foster City,
CA) following the manufacturer’s suggested protocol. All
reactions were performed in triplicate with 5 ng of sam-
ple DNA for each reaction. The copy-number assay
detects the target genomic region and consists of a FAM
dye-labeled minor groove binder probe and unlabeled
PCR primers. This target assay was amplified simultan-
eously with a genomic reference assay, which includes a
VIC dye-labeled TAMRA probe and primers, in a duplex
RT-qPCR. The reference assay detects the RNaseP gene,
a known two copy region in the diploid genome. Plates
were run using the Bio-Rad CFX384 machine (Bio-Rad
Laboratories, Hercules, CA) under recommended PCR
cycling conditions (95°C for 10 minutes followed by 40
cycles of 95°C for 15 seconds and 60°C for 1 minute).
Cycle thresholds (Ct) were calculated using CFX Man-
ager Software version 2.0 (Bio-Rad) and reformatted
with a manual Ct threshold specification of 0.20 for im-
port into CopyCaller Software version 1.0 (Applied Bio-
systems). Wells with VIC Cr values exceeding the
default filtering threshold of 32 were excluded. Relative
quantification analysis was performed with CopyCaller
software where discrete copy-number classes were deter-
mined by employing a maximum-likelihood algorithm
on the real-time data.

Results
Genomic positions are designated according to NCBI36/
hg18 human genome assembly.

SNP associations

A total of 292 of the 293 genotyped samples (177 cases
and 115 controls) passed the default QC call rate thresh-
old (286%), with overall sample call rates ranging from
86.1-99.3%. EIGENSTRAT analysis showed no evidence
of population stratification (p > 0.15 for first 10 principal
components).

No SNP surpassed the Bonferroni-corrected significance
threshold of 7.1 x 10°® for the Fisher’s exact allelic or geno-
typic tests. The top four SNP candidates had an allelic or
genotypic p-value between 107 and 107 (Table 1).

CNV detection and confirmation

A total of 14,181 autosomal CNVs, 9074 deletions and
5107 amplifications meeting inclusion criteria, were
detected among the 169 case and 114 control subjects
that passed the sample QC. The identified variants ran-
ged in size from 241 base pairs to nearly 4.1 Mb (median
= 22.8 kb). The copy-number deletions were merged
into 2770 regions, as defined by the minimum region of
overlap across sample calls. Among these, three merged
regions of recurrent deletions that were detected in
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Table 1 Association (p-value) of the top four SNP candidates with PE “

SNP ° Minor allele frequency (%) Fisher's exact p-value Chr. Position SNP type Closest Distance
Cases Controls Allelic Genotypic gene to gene (kb)
(n=177) (n=115)

rs1426409 226 311 258% 107 3.14x10° 4 36850339 Intergenic KIAA1239 72.7

1517686866 14.2 29.1 197x107 380x10° 1 215251888 Intronic ESRRG 0

rs9831647 38.1 483 165x107 936x10° 3 8546110 Intronic LMCD1 0

rs10743565 243 28 500x10°  164x10° 12 25551846 Intronic IFLTD1 0

9SNPs with allelic or genotypic p-value between 10” and 107,

bOrdered according to smallest to largest allelic or genotypic Fisher’s exact p-values.

multiple cases, but were less common or undetected in
controls, met the pre-specified screening criteria (Table 2;
see Additional file 2: Table S2 for an annotated list of
deleted regions in autosomal chromosomes meeting ini-
tial prioritization criteria). The exact breakpoints for
these three candidate CNVs remain undetermined, but
microarray data suggest that these breakpoints may vary
in subjects harboring the deletions. Correspondingly,
copy-number amplifications were merged into 2981
regions with 21 regions meeting initial prioritization cri-
teria (Additional file 3: Table S3). For X chromosome,
107 deletion and 114 amplification calls were included
and merged into 97 regions of deletion and 97 regions
of amplification. Only five merged regions of recurrent
amplifications in X chromosome were found to be
enriched in cases (Additional file 4: Table S4). These
minimal common regions of amplification are interest-
ing candidates for further investigation.

The most enriched deletion among cases is ~15 kb in
length and was detected in eight cases (4.7%) and one
control (0.9%). The shared region of overlap for this de-
letion in 16p13.11 extends from 14.972 to 14.987 Mb
and encompasses the PDXDCI gene. This deletion was

Table 2 Recurrent copy-number deletions identified in PE
cases and controls

CNV region “ Gene Copy-number frequency °
contents  ases < Controls © Population-
based
controls ¢
Chr13:83.004-83.045 Mb  Intergenic  5/169  0/114 6/770
Chr16:14.972-14.987 Mb  PDXDC1 8/169 1/114 14/770
Chr19:48.461-48476 Mb  PSGI11 5/169 17114 2/770

“Minimum region of overlap across all subjects harboring the deletion.

CNV frequencies are derived from SNP microarray data.

“Algorithm detected CNVs were all validated by RT-gPCR with the exception of
one case in each of the chromosome 13 and 16 regions due to unavailable
DNA. Furthermore, RT-gPCR identified a heterozygous deletion in one case
and two control subjects in the chromosome 16 CNV region as well as a case
subject in the chromosome 19 region that were called as copy normal by the
algorithms.

4White female subjects from a GWAS of schizophrenia genotyped using
Affymetrix SNP 6.0 microarrays. CNVs were detected using the same
algorithms as the PE GWAS. Four population-based controls did not pass
sample QC.

identified in 14 of the 770 (1.8%) schizophrenia study
controls that passed QC. The 41 kb intergenic deletion
at 13q31.1 was detected in five cases (3.0%) and zero
controls with a shared region from 83.004 to 83.045 Mb.
This deletion was also identified in six of the 770 (0.8%)
schizophrenia study controls. The nearest gene,
SLITRK1, is located 304.17 kb downstream of this re-
gion. The third CNV overlaps with the PSG11 gene (al-
ternatively spliced as PSG9 and PSG1Is) in 19q13.31
from 48.461 to 48.476 Mb. This deletion was detected in
five cases (3.0%), one control (0.9%), and only two
schizophrenia study controls (0.3%). It was also reported
in very low frequencies by three studies [27-29] listed in
the Database of Genomic Variants (http://projects.tcag.
ca/variation/) [30]. One study reported this deletion in
2/1854 (0.1%) controls, one in 1/776 (0.1%) controls,
and the last in 11/2026 (0.5%) controls.

All samples with available DNA were genotyped using
pre-designed TagMan assays for the deletions in 13q31.1
(ABI assay ID: Hs03297694_cn) and 16pl3.11
(Hs03938043_cn). The deletion in 19q13.31 was geno-
typed using a custom assay with a target region of
chr19:48,461,720-48,462,020 designed using the Copy
Number Assay Workflow Builder (http://www5.applied-
biosystems.com/tools/cnv/). Two cases failed to amplify
across all three genomic regions while an additional case
failed for the chromosome 19 region. These three sam-
ples were algorithm called as copy normal in the three
regions of interest. No samples were excluded for sur-
passing the VIC Cr value threshold.

No false-positive and only a few false-negative algo-
rithm calls were found by laboratory verification. The
presence of all putative deletions called by the algo-
rithms in these three genomic regions was successfully
confirmed by RT-qPCR, except one case subject in each
of the chromosome 13 and 16 CNV regions where DNA
was unavailable. The RT-qPCR assay showed that a het-
erozygous copy-number deletion was present in 4/155
cases and none in 98 controls in the 13q31.1 region and
8/155 cases and 3/98 controls in the 16p13.11 region, in-
cluding deletions detected in one case and two controls
that were not algorithm called. For the deletion in
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chromosome 19, a heterozygous deletion was confirmed
in five cases and one control with an additional case de-
letion detected that was called copy normal by the CNV
calling algorithms.

Discussion

Genome-wide analysis of CNVs identified three rare dele-
tions enriched in PE, two of which disrupt genes, con-
firmed by laboratory validation. Although copy-number
amplifications were not selected for assay, several candidate
regions were detected in the autosomal and X chromo-
somes. The most interesting deletion, based on possible
biological pathways, is the 15 kb deletion in 19q13.31 that
encompasses the PSG11 gene. Pregnancy-specific glycopro-
teins (PSGs) are mainly produced by placental syncytiotro-
phoblasts during pregnancy and constitute a subgroup of
the carcinoembryonic antigen family, which belongs
to the immunoglobulin superfamily [31]. Studies
have shown that several members of the PSG gene
family, including PSG11, induce dose-dependent monocy-
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physiologically contribute to the maintenance of a success-
ful pregnancy. In contrast, activation of coagulation
mechanisms by pro-inflammatory cytokines can lead to
maternal endothelial dysfunction, vasculitis, and conse-
quently uteroplacental hypoxia [32]. Hypoxia plays a crucial
role in placental pathologies such as PE. Inadequate utero-
placental oxygenation is believed to be involved in molecu-
lar events leading to the clinical manifestations of PE [33].
PSGI1 is located at the telomeric end of the PSG gene
family cluster (chr19:47.918-48.465 Mb) and is
arranged in tandem with the other PSG genes [34].
This cluster has a high density of segmental duplica-
tions (low copy repeats). CNVs are not uniformly
distributed in the human genome, but tend to be
enriched in regions of segmental duplication. Seg-
mental duplications predispose affected regions to
recurrent chromosomal rearrangements through
non-allelic homologous recombination and may be
the underlying mechanism in the formation of CNVs
within this cluster (see Figure 3 for locations of pu-

tic secretion of anti-inflammatory cytokines, which tative segmental duplications within the PSG gene family
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Figure 3 UCSC Genome Browser plot of the PSG gene family region (chr19:47.918-48.465 Mb). (A) Each red horizontal bar represents the
length and breakpoints of a putative deletion called in PE cases or controls. (B) UCSC Genes located within this region. Asterisks indicate the
genomic positions of nominally significant SNPs (from left to right: rs4030933, rs2159027, rs10417319, and rs10402173). (C) Segmental duplications
of 21 kb with 90-98% sequence similarity.
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cluster) [35,36]. According to the microarray data, there is  yet to be directly linked to PE, they represent intriguing
a highly variable genomic region upstream of the deletion  candidates for future research.
of interest in 19q13.31 (Figure 4). It is apparent that the 3’ The validity of CNVs identified in array-based studies
boundary of this upstream CNV hotspot terminates before  is algorithm-dependent. High variability in findings
the alternatively spliced PSGII region. However, the exists among CNV detection methods, along with sub-
enriched minimum deleted region appears to be primarily  stantial false-positive and false-negative rates [38]. In an
an extension of this more common upstream deleted re-  attempt to increase the accuracy of CNV prediction, this
gion (5/6 deletions). Although the exact breakpoints remain  study employed three algorithms (Birdsuite (Birdseye
undetermined, RT-qPCR confirmed the deletion break- and Canary), PennCNYV, and QuantiSNP) with stringent
points to be varying in this genomic locus; the minimal overlapping criteria to call CNVs on a genome-wide
deleted region was not detected in every sample with the level. RT-qPCR confirmed 4/4 predicted deletions in
upstream deletion. There is also no evidence of appreciable  13q31.1 with DNA available for assay. All calls in this re-
enrichment in the minimum region of overlap (48.396- gion were in 100% agreement by the three algorithms,
48448 Mb) for upstream deletion, which was detected in ~ with no false-positive or false-negative calls. For the
29 cases (17.2%) and 14 controls (12.3%). Furthermore, in-  deletions in 16p13.11 and 19q13.31, all calls in cases and
spection of the entire PSG gene family region controls with available DNA were confirmed by assay.
(chr19:47.918-48.465 Mb) suggests that only the deletion in =~ However, there were false-negative calls in one case and
the 48.461 to 48.476 Mb region, which disrupts PSG11,is  two controls for the former and in one case subject for
enriched in PE cases compared to controls (Figure 3). the latter CNV. In both of these deletions, the minimum
Studies have shown that CNVs can lead to diseases or  region of overlap among cases and controls was called
other phenotypes by various mechanisms, including the by at least two algorithms. Visual inspection of signal in-
disruption of functional genes [37]. Therefore, deletions tensity plots for the assay-confirmed CNV calls sup-
are under strong purifying selection and are preferen- ported the heterozygous copy-number deletion call,
tially located outside of genes and highly conserved ele-  where the LRR drops to the -0.5 region and the BAF
ments in the genome [15]. The rarity of the deletion in  clusters around O or 1. Although the plots revealed that
the functionally relevant PSG11 gene, within a hotspot ~LRR and BAF patterns were consistent with a deletion,
of genomic instability, suggests that there is selective the false-negative calls appear to be caused by a high
pressure acting against this CNV. Consequently, al- signal-to-noise ratio in the array data at these regions.
though PSGII and its alternatively spliced variants have  Despite the potential exclusion of candidate CNV regions
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Figure 4 UCSC Genome Browser plot of the copy-number deletion at chr19:48.461-48.476 Mb. (A) The vertical black lines indicate the
minimum region of overlap across all subjects harboring the deletion. Each red horizontal bar represents the length and breakpoints of a
deletion detected in either PE cases or controls. Exact CNV breakpoints are unknown. (B) UCSC Genes located within this region. The asterisk
denotes the target region (chr19:48461,720-48,462,020) of the custom TagMan copy-number assay. (C) Genomic positions of SNP and structural
variation copy-number probes used in the Affymetrix SNP 6.0 microarray.
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due to the stringent CNV detection method applied in this
study, it was successful in reducing the false-positive and
false-negative rates that are common in studies that rely
on array-based technologies to infer CN'Vs.

The present GWAS did not identify any variants that
were associated with PE at a genome-wide level of sig-
nificance. The lack of significant findings may be due to
the insufficient statistical power of this study to detect
variants of small or moderate effect size, increasing the
false-negative rate. Furthermore, forcing raw measure-
ments with continuous distributions (i.e. probe in-
tensity measurements) into discrete copy-number classes
(e.g. gain, no change, loss) when calling CNVs using array-
based technologies may result in the loss of substantial stat-
istical power [39]. Discovery of disease-associated variants
may be biased towards genomic regions with better cover-
age by the SNP microarray used in the study. Study findings
also assumed that genotype does not influence subject se-
lection. Although a reasonable assumption, there may be
situations where the genotype affects participation rates
through its association with certain selection factors [40].

Although no SNPs reached genome-wide significance,
it is interesting to note that four SNPs within the PSG
gene family cluster (chr19:47.918-48.465 Mb) and imme-
diate flanking regions (+10 kb) reached nominal signifi-
cance, including one in the intronic region of PSG1, 3, 4,
and 8 genes, one in the intronic region of PSG2, 3, 6, 7,
and 11 genes, and two located intergenically between
PSG2 and PSGS (see Figure 3 for the SNP positions
within the gene cluster). These nominally significant
SNPs may be functionally important; regulatory ele-
ments, such as enhancers and repressors, may reside in
intronic regions or up- and downstream of the transcrip-
tional unit [41]. Further replication and functional stud-
ies are warranted to elucidate the roles of these putative
risk variants within the PSG gene family region in PE.

Conclusions

Genome-wide CNV analysis discovered three rare but
recurrent deletions that may confer risk for PE, includ-
ing a potentially functionally important copy-number
deletion in the PSGII gene. Larger replication studies
are needed to confirm these findings. Although no sig-
nificant SNPs were discovered, the list of top SNP candi-
dates generated by the present study may be a useful
basis for future genetic association studies of PE.
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