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Abstract

Background: Greater epidemiologic understanding of the relationships among fetal-infant mortality and its
prognostic factors, including birthweight, could have vast public health implications. A key step toward that
understanding is a realistic and tractable framework for analyzing birthweight distributions and fetal-infant
mortality. The present paper is the first of a two-part series that introduces such a framework.

Methods: We propose describing a birthweight distribution via a normal mixture model in which the number of
components is determined from the data using a model selection criterion rather than fixed a priori.

Results: We address a number of methodological issues, including how the number of components selected
depends on the sample size, how the choice of model selection criterion influences the results, and how estimates
of mixture model parameters based on multiple samples from the same population can be combined to produce
confidence intervals. As an illustration, we find that a 4-component normal mixture model reasonably describes the
birthweight distribution for a population of white singleton infants born to heavily smoking mothers. We also
compare this 4-component normal mixture model to two competitors from the existing literature: a contaminated
normal model and a 2-component normal mixture model. In a second illustration, we discover that a 6-component

population of black singletons.

normal mixture model may be more appropriate than a 4-component normal mixture model for a general

Conclusions: The framework developed in this paper avoids assuming the existence of an interval of birthweights
over which there are no compromised pregnancies and does not constrain birthweights within compromised
pregnancies to be normally distributed. Thus, the present framework can reveal heterogeneity in birthweight that
is undetectable via a contaminated normal model or a 2-component normal mixture model.

Background

The impact of birthweight on perinatal mortality and
morbidity has been debated for decades [1-11].
Although advances in maternal and perinatal care have
reduced overall mortality, infants with very low birth-
weights (1000-1500 g; VLBW) and extremely low birth-
weights (<1000 g; ELBW) remain at high risk. These
infants require more intensive utilization of health
resources, at increased costs relative to normal birth-
weight (NBW; 2500-4000 g) infants [12-14]. Even
infants of moderately low birthweight (1500-2500 g;
MLBW) and high birthweight (>4000 g; HBW) have ele-
vated mortality and morbidity [15,16]. Greater
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epidemiologic understanding of the relationships among
fetal-infant mortality and its prognostic factors, includ-
ing birthweight, could have vast public health implica-
tions. A key step toward that understanding is a realistic
yet tractable framework for analyzing birthweight distri-
bution and fetal-infant mortality.

Simple bell curves are inadequate characterizations of
birthweight distributions [17,11,18-20]. Wilcox and Rus-
sell proposed a contaminated normal model, in which a
predominant normal distribution accounts for most
birthweights while a contaminating residual distribution
yields most VLBW and ELBW cases [21]. The residual
distribution does not have a specific structure and, in
particular, is not normal. The contaminated normal
model was later extended by Umbach and Wilcox to
accommodate two residual distributions, one yielding
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excess births in the left tail and the other in the right
tail [22].

Gage and Therriault took a different approach, employ-
ing a 2-component normal mixture model [23]. A pri-
mary normal distribution accounts for most birthweights,
while a secondary normal distribution is linked not only
to most VLBW and ELBW cases but also to many HBW
cases. The 2-component normal mixture (resp., contami-
nated normal model) dichotomizes birthweights: those
arising from the primary distribution (resp., predominant
distribution) are conceptualized as reflecting ordinary
fetal development, while the rest are considered to signify
compromised fetal development [24]. Gage also formu-
lated a parametric mixtures of logistic regressions
(PMLR) technique to evaluate heterogeneity in mortality
associated with this dichotomy [24].

While the aforementioned works demonstrate great
insight, their statistical models have some limitations. In
particular, the number of constituent distributions (pre-
dominant, residual, primary, secondary) is fixed a priori.
If a constituent distribution can signify compromised
fetal development [24], perhaps different biological
mechanisms for compromised fetal development war-
rant a model with more than two or three constituent
distributions. Likewise, perhaps more than two or three
birthweight-specific mortality curves are needed to
describe heterogeneity in mortality.

The present paper is the first in a two-part series that
introduces a new framework for modeling birthweight
distribution and fetal-infant mortality. We propose a
normal mixture model for birthweight distribution in
which the number of components is not fixed a priori
but rather determined from the data using the Flexible
Information Criterion (FLIC) (Pilla and Charnigo, Con-
sistent estimation and model selection in semipara-
metric mixtures, submitted) or another model selection
technique [25,26]. In the companion paper, we show
how to estimate birthweight-specific mortality within
each component using a generalization of PMLR [24]
and how to compare mortality across components
within a single population or across populations within
a single component. In both papers, we seek statistical
models that provide an empirically reasonable fit to the
data. However, the goal is not to find good fitting mod-
els for their own sake. Rather, such models may lead to
better assessments of mortality.

Results

1. Pragmatics for mixture modeling

a. Finite normal mixture models

Many phenomena cannot be accurately described via a
normal distribution. When no other commonly used
probability distribution seems appropriate, a finite
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normal mixture model is often reasonable. We now
briefly describe the model. Readers interested in theore-
tical developments may consult references [27-30] and
works cited therein.

Let f(x; 4, 0) denote the probability density for the
normal distribution with mean g and standard deviation
0. A finite normal mixture model with k components
has probability density

k
zpjf(x;ﬂjfaj)- (1)
j=1

A common way to interpret Equation (1) is to imagine
that the full population consists of k subpopulations.
The proportion of individuals in the full population
belonging to subpopulation j is p;. In subpopulation j,
measurements are normally distributed with mean y;
and standard deviation o;.

The mixture components may or may not represent
subpopulations with obvious biological definitions out-
side the statistical model. For example, in a 2-compo-
nent normal mixture describing birthweights for white
singletons in the United States, there is not an obvious
biological characterization for the two components: we
may say that the component with the smaller mean
reflects compromised pregnancies, but we cannot imme-
diately attribute the compromised pregnancies to a spe-
cific biological mechanism.

Ideally, modeling with finite normal mixtures may lead
to discoveries of subpopulations with biological defini-
tions that were not immediately obvious, although the
mixture components themselves may still only be
approximations to such subpopulations.

b. Order selection and the flexible information criterion
Equation (1) may be an imperfect description of real
data regardless of k, but with k sufficiently large the
description may be adequate to address a problem of
scientific interest. Conversely, if k is too large, the
model may become unwieldy. Hence, a researcher with
real data must confront the problem of “order selection”
(i.e., choosing an appropriate number of components).

Let M denote the maximum number of components
that a researcher is willing to accept. For 1 < m < M, let
L, denote the maximum value of the likelihood attain-
able by an m-component normal mixture. The Akaike
Information Criterion (AIC) [25], Bayesian Information
Criterion (BIC) [26], and Flexible Information Criterion
(FLIC) (Pilla and Charnigo, Consistent estimation and
model selection in semiparametric mixtures, submitted)
are

AIC,, =-2logL,, +2(3m-1), (2)
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BIC,, =—-2logL,, +logn(3m—1), and (3)

FLIC,, = —2logL, +2(logyn)®")(Bm-1).  (4)

Above, (3m - 1) is the number of free parameters in
an m-component normal mixture. Also, #n denotes the
sample size, J the average fraction of within-component
variability to total variability over the M normal mix-
tures fitted by maximum likelihood, and B(n,0) a bivari-
ate function taking values between 0 and 1 (Pilla and
Charnigo, Consistent estimation and model selection in
semiparametric mixtures, submitted). The criteria bal-
ance fidelity to the observed data against model com-
plexity; models are preferred for which the criteria are
smaller. Note that m indexes normal mixtures being
judged by the criteria, while k pertains to a normal mix-
ture that has been adopted for data analysis.

The FLIC is distinguished from the AIC and BIC in
that its penalty term 2(log \/E)B(”'5)(3m —1) is deter-
mined not only by the sample size but also by the con-
figuration of data points: a configuration suggesting
greater heterogeneity allows a model with more compo-
nents to be selected. The penalty term of the FLIC also
depends on M, so that a researcher must specify M. In
analyzing birthweight data, we fix M = 7 since having
too many components would impede inference about
mortality risk. The FLIC and AIC perform well for small
samples, while the FLIC and BIC are better for large
samples, so we prefer to rely on the FLIC (Pilla and
Charnigo, Consistent estimation and model selection in
semiparametric mixtures, submitted).

c. Computational procedures

To employ the FLIC, we must obtain maximum likeli-
hood estimates of the proportions, means, and standard
deviations in all finite normal mixture models under
consideration. For models with more than one compo-
nent, numerical optimization procedures must be used.
We apply the expectation maximization (EM) algorithm
to obtain preliminary estimates [31], followed by the
optimization (optim) procedure in version 2.3.1 of R (R
Foundation for Statistical Computing, Vienna, Austria,
2006) to acquire final estimates. Our R code is available
upon written request to the corresponding author. See
Section I of [Additional file 1] for details on using EM
and optim, including initial value specification.

2. Analyzing birthweight data with the FLIC

a. A FLIC-selected model and competitors

To exemplify use of the FLIC, we draw a random sam-
ple of size 50,000 from the 202,849 white singletons
who were born (or experienced fetal death) from
2000 to 2002 and whose mothers smoked heavily (at
least twenty cigarettes per day). Since records with
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birthweights less than 500 grams or gestational ages less
than 22 weeks were not consistently documented [32],
we require infants in our sample to have known gesta-
tional ages of at least 22 weeks and birthweights
between 500 and 5500 grams. The data source is the
National Center for Health Statistics (NCHS) Public-Use
Perinatal Mortality Data Files.
The FLIC selects a 4-component model (Figure 1a),

.009f(x;872,247) +.231f(x; 2890,726) +

707 f(x;3165,403) +.054 f (x; 3821,365). 2

Component 3 is loosely analogous to the predominant
distribution in the contaminated normal model [22] and
the primary distribution in the 2-component model [23].
Component 1 in the 4-component model includes
ELBW and VLBW cases, component 2 contains mostly
MLBW and NBW cases but also some VLBW and
HBW cases, and component 4 comprises NBW and
HBW cases.

Next we fit the contaminated normal and 2-compo-
nent models to the same data set. For the contaminated
normal model, we take the bin width to be 200 grams
and use the BIC to select the number of contaminated
bins [22]. Approximately 2.5% of cases are assigned to
the lower residual distribution (threshold: 1700 grams),
97.5% to the predominant distribution (estimated mean
and standard deviation, 3168 and 488 grams), and less
than 1 in 8700 to the upper residual distribution
(threshold: 5300 grams). Regarding the 2-component
model, approximately 88.0% of cases are assigned to the
primary distribution (estimated mean and standard
deviation, 3186 and 458 grams) and 12.0% to the sec-
ondary distribution (estimated mean and standard devia-
tion, 2617 and 951 grams).

The fitted contaminated normal, 2-component, and 4-
component models are compared in Figure 2. The con-
taminated normal model fits the ELBW and VLBW data
nicely but exhibits artifacts at the thresholds of 1700
and 5300 grams; the contaminated normal model also
understates the HBW data. The 2-component model
provides a good fit at most birthweights but severely
understates the ELBW data. The 4-component model
avoids these weaknesses but has an exaggerated peak
near the component 1 mean.

b. Reproducibility of order selection

In the preceding example, the selection of a 4-compo-
nent model was based on a specific sample of 50,000
white singletons whose mothers smoked heavily. If we
draw another sample of size 50,000, will the FLIC
express the same preference?

We can address this question by drawing N,, samples
of size 50,000 with replacement and applying the FLIC
to each sample. Here “with replacement” means that an
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Figure 1 Four-Component Mixture Models for Birthweight Distribution. (a) A 4-component normal mixture model for birthweight
distribution, with parameters estimated using a single sample of size 50000 from the population of white singletons born to heavily smoking
mothers, is shown superimposed against a histogram of the 50000 birthweights. (b) A 4-component normal mixture model, with parameters
estimated by combining the results for 25 samples of size 50000, is shown.

infant can appear in more than one sample, not that an
infant can appear twice in the same sample. The fre-
quency with which the FLIC prefers a 4-component
model indicates the reproducibility of order selection.

Table 1 shows the verdicts of the FLIC and other cri-
teria for N,., = 25 samples of size 50,000. The FLIC pre-
fers a 4-component model for 22 out of 25 samples; for
the other three samples, the FLIC narrowly prefers a 6-
component model. The verdicts of the BIC match those
of the FLIC. The AIC is equivocal between 6-compo-
nent and 7-component models. Table 1 also identifies
the preferences of the FLIC for sample sizes smaller
than 50,000. The tendency to favor simpler models at
smaller sample sizes can be understood by analogy to a
hypothesis test. Imagine testing a null hypothesis that
there are two components against an alternative hypoth-
esis that there are more than two components: as the
sample size decreases, the power to reject a false null
hypothesis also decreases.

¢. Uncertainty in parameter estimation

Although we may be comfortable using a 4-component
model for the birthweights of white singletons whose
mothers smoked heavily, Equation (5) does not convey the
uncertainty in the parameter estimates for that model.

To assess uncertainty in parameter estimation, we fit
k-component models using each of N,,, samples of
equal size; in our example, k = 4 and there are N,,, =
25 samples of size 50,000. Let 6 represent a parameter
of interest, such as us, and let 91929Np represent
estimates of 6 from the N,, samples. With

NVE
é:Nmp’lzfei denoting the “meta-sample” mean of
i=1
01,0,,...,0n and serving as an overall estimate of 6,
and with So Idenoting the corresponding standard

deviation, we can define a confidence interval via

0+or—CSg/ IN o (6)
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Figure 2 Competing Models for Birthweight Distribution. (a) A contaminated normal model, a 2-component normal mixture model, and a 4-
component normal mixture model are compared. The results are based on a single sample of size 50000 from the population of white
singletons born to heavily smoking mothers. (b) to (d) Close-up views of the competing models are displayed.
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If 9,6,,...,6y Wwere normally distributed with
expected value 6, “then for 95% confidence we should
choose C as the upper .025 quantile of the standard nor-
mal distribution (or of a T distribution); in the absence
of normality, to be conservative we could choose
C=1/+.05 =4.47 based on Chebychev’s inequality
[33]. However, not even C = 5.0 yields a coverage prob-
ability of 95% (see Section 3b of Results). There are two
problems.

First, mixture model parameter estimates may have
non-negligible bias; the expected value of
01,0,,...,0n may not be close to 6. Second, when
each of the NTZP samples constitutes a large fraction of
the underlying population, él,éz,-.-,éN,ep are not
independent due to the large overlaps among the N,,,
samples.

The first problem can be addressed by modifying
Equation (6) to

é+0r—{]§9+C§9/ IN e} (7)
where denotes the estimated absolute value of the

bias [34]. Our approach to acquiring p 0 is simulation-
based. We simulate a birthweight data set from

LA AA
ijf(x,uj,crj), where 1 Gy DG ATE

=1
tlhe overall estimates of their respective parameters, and

A

A
then compare g to its own estimate , arising from

sim A
the simulated data set: the “drift” from j to »
sim
should mirror the drift from 6 to é However, since
relying on a single simulated data set seems precarious,
we define p —as the average value of | » A over
X . cf | 0 sim— 0
five simulated data sets.
The second problem can be resolved by choosing the

value of C according to the fraction of the underlying
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Table 1 Preferences of Model Selection Criteria on Real
Data

Number of FLIC BIC AIC FLIC BIC AIC
Components 5000 5000 5000 10000 10000 10000
1 0 0 0 0 0 0

2 20 21 1 8 11 0

3 5 4 4 5 5 0

4 0 0 14 12 9 15

5 0 0 1 0 0 1

6 0 0 4 0 0 8

7 0 0 1 0 0 1
Number of FLIC  BIC AIC FLIC  BIC AIC
Components 25000 25000 25000 50000 50000 50000
1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 25 25 5 22 22 1

5 0 0 1 0 0 0

6 0 0 10 3 3 6

7 0 0 9 0 0 18

The columns “FLIC 5000”, “BIC 5000”, and “AlC 5000” contain the preferences
of the three model selection criteria for the number of components in a
normal mixture model for birthweight distribution, based on 25 samples of
size 5000 from the population of white singletons born to heavily smoking
mothers. The next nine columns correspond to sample sizes of 10000, 25000,
and 50000.

population that each of the N,,, samples constitutes. Let
C, denote the value of C that would be chosen if this
fraction were negligibly small, and let C; denote the
value that would be chosen if this fraction were equal to
¢, a positive number less than 1. In Section II of [Addi-
tional file 1], we show that
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C‘P = CO\/(erep / {1 - (1 - (p)Nmﬂ}' ®)

Section II of [Additional file 1] also explains why we
sample with replacement, why we sample instead of
using the full population, and how to compare para-
meters within and between populations.

Table 2 lists overall estimates and confidence intervals
for parameters in a 4-component model for the birth-
weights of white singletons born to heavily-smoking
mothers, using Equations (7) and (8) with the same N,
= 25 samples of size 50,000 in Table 1, Cy = 2.5 (see
Section 3b of Results), and ¢ = .2465 = 50,000/202,849.
Figure 1b displays the mixture model implied by the
overall estimates in Table 2. Section III of [Additional
file 1] examines how the overall estimates and confi-
dence intervals change when the sample size is less than
50,000.

3. Further illustrations

a. Simulation study on model selection

For our first simulation study we generated 25 nonover-
lapping data sets of size 5000 from designs A through E
in Table 3; see also Figure 3. Designs A through E
represent the fitted 2- through 6-component models
derived from the 25 samples of size 50,000 in Table 1.
Values in the data sets less than 500 or greater than
5500 were discarded since the 2- through 6-component
models were meant to mimic a birthweight distribution;
new values were drawn as needed to complete the data
sets. We assessed how often the FLIC, BIC, and AIC
recovered the correct number of components. This was
repeated for data sets of different sizes up to 100,000.

Table 2 Estimating Parameters in a Four-Component Mixture Model

Quantity P1 P2 P3 Pa

é [average of 25 estimates] 007 182 758 052
Sa [standard deviation of 25 estimates] 001 039 037 .008
]§g [bias adjustment] 001 041 032 009
Confidence interval (005, .010) (092, .272) (681, .836) (033, .071)
Quantity M Ha M3 Ma

é [average of 25 estimates] 832 2772 3170 3804
ég [standard deviation of 25 estimates] 46 103 7 25

f39 [bias adjustment] 34 80 9 38
Confidence interval (741, 924) (2565, 2979) (3152, 3187) (3735, 3873)
Quantity G, G, G3 G4

é [average of 25 estimates] 210 740 417 413
ég [standard deviation of 25 estimates] 28 23 10 38

ég [bias adjustment] 30 23 7 46
Confidence interval (146, 274) (688, 792) (398, 436) (321, 506)

Parameters in a 4-component normal mixture model for birthweight distribution are estimated, based on 25 samples of size 50000 from the population of white
singletons born to heavily smoking mothers. Interval estimates are constructed using Equations (7) and (8) with Co = 2.5 and ¢ = .2465.
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Table 3 Mixture Models in Simulation Studies

Design Description

Mixture Density

A 2 120 f(x2601,947) + 880 f(x3186,457)
components
B 3 041 f(x1673,617) + 871 f(x,3162,455) + 088 f

components  (x;3537,575)

C 4 007 f(x:832,210) + .182 f(x;2772,740) + 758 f
components (x3170417) +
052 f(x;3804,413)

D 5 007 f(x:803,193) + .086 f(x;2323,631) + 678 f
components  (x;3114,419) +
214 f(x3441,441) + 014 f(x4142,428)

E 6 006 f(x;752,160) + 032 f(x;1737471) + 268 f
components  (x2829,442) +
586 f(x;3215,373) + .099 f(x,3762,353) + 010 f
(x4337,387)

Probability densities for normal mixture models used in our simulation studies
are specified.

As shown in Table 4, the FLIC and BIC consistently
returned the correct answer with the 2-component
model at a sample size of 5000, the 3-component model
at a sample size of 10,000, and the 4-component model
at a sample size of 25,000. The FLIC and BIC did not
consistently return the correct answer for the
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5-component or 6-component model at any sample size,
although they occasionally detected components 5 and 6
at a sample size of 100,000. The AIC was erratic.

At larger sample sizes, the FLIC and BIC routinely
claimed a third (non-existent) component for the 2-
component model. We attribute this to the removal of
values less than 500 or greater than 5500, after which
the 2-component model was, strictly speaking, no longer
a normal mixture but rather a truncated normal
mixture.

b. Simulation study on calibrating confidence intervals

For our second simulation study we generated 25 over-
lapping data sets of size 50,000 from design C in Table
3, the degree of overlap consistent with a population of
200,000. For each of various C between 2.0 and 5.0, we
used Equation (7) to form confidence intervals for the
mixture parameters pi, po, P3, P4 Y1, B2, U3, Ha, O1, Oo,
03, 04. We recorded how many of the mixture para-
meters were contained in their respective confidence
intervals. This was repeated nine more times, and we
tabulated how many of the 120 = 12 x 10 confidence
intervals contained their targets. Confidence intervals
were also formed using Equation (6) for comparative
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Figure 3 Mixture Models in Simulation Studies. (a) Probability densities for the normal mixture models used in our simulation studies are
compared. (b) to (d) Close-up views of the probability densities are displayed.
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Table 4 Preferences of Model Selection Criteria in Simulation Studies

True Model Sample size FLIC preferences BIC preferences AIC preferences

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

2 5000 25 0 0 0 0 0 25 0 0 0 0 0 7 9 1 3 4 1
10000 25 0 0 0 0 0 25 0 0 0 0 0 2 12 7 2 2 0
25000 20 5 0 0 0 0 21 4 0 0 0 0 0 5 4 8 4 4
50000 5 19 1 0 0 0 5 19 1 0 0 0 0 0 2 6 10 7
100000 0 20 3 1 1 0 0 20 3 1 1 0 0 0 0 0 6 19

3 5000 19 6 0 0 0 0 1 6 0 0 0 0 1 18 5 1 0 0
10000 1 24 0 0 0 0 1 24 0 0 0 0 0 16 6 1 2 0
25000 0 25 0 0 0 0 0 25 0 0 0 0 0 9 4 3 6 3
50000 0 24 1 0 0 0 0 24 1 0 0 0 0 0 2 1 15 7
100000 0 17 3 4 1 0 0 17 3 4 1 0 0 0 0 3 7 15

4 5000 18 2 5 0 0 0 20 1 4 0 0 0 0 1 20 1 2 1
10000 10 1 14 0 0 0 10 1 14 0 0 0 0 1 24 0 0 0
25000 0 0 25 0 0 0 0 0 25 0 0 0 0 0 24 0 1 0
50000 0 0 25 0 0 0 0 0 25 0 0 0 0 0 6 14 3 2
100000 0 0 25 0 0 0 0 0 25 0 0 0 0 0 0 8 10 7

5 5000 21 2 2 0 0 0 22 1 2 0 0 0 0 2 12 9 2 0
10000 9 3 12 1 0 0 9 3 12 1 0 0 0 0 15 9 1 0
25000 0 0 25 0 0 0 0 0 25 0 0 0 0 0 8 10 6 1
50000 0 0 25 0 0 0 0 0 25 0 0 0 0 0 0 10 13 2
100000 0 0 15 10 0 0 0 15 10 0 0 0 0 0 6 10 9

6 5000 24 1 0 0 0 0 24 1 0 0 0 0 0 3 7 10 2 3
10000 9 2 13 1 0 0 10 2 13 0 0 0 0 0 12 4 8 1
25000 0 0 23 2 0 0 0 0 23 2 0 0 0 0 0 2 19 4
50000 0 0 24 0 1 0 0 0 25 0 0 0 0 0 0 0 15 10
100000 0 0 10 7 8 0 0 0 11 6 8 0 0 0 0 0 10 15

The row with “True Model” = 2 and “Sample size” = 5000 contains the preferences of the three model selection criteria for the number of components, based on
25 samples of size 5000 simulated from a 2-component normal mixture model. Other rows correspond to a different sample size and/or underlying number of

components.

purposes. The above steps were repeated with overlap-
ping data sets consistent with a population of 1,000,000
and with nonoverlapping data sets consistent with an
effectively infinite population.

The results are summarized in Table 5. With an effec-
tively infinite population, only 81.7% of the confidence
intervals formed using Equation (6) contained their tar-
gets at C = 5.0. The confidence intervals formed using
Equation (7) contained their targets 95.0% of the time at
C = 2.5. The adjustment suggested by Equation (8)
appears reasonable: ¢ = .05 = 50,000/1,000,000 and N,,
= 25 yield C; = 1.315 Cy, which accords with the 95.8%
capture of mixture parameters at C = 3.5 = 1.315 x 2.5
with a population of 1,000,000.

c. Another example with real data

We also drew 25 samples of size 50,000 from the
1,749,827 black singletons who were born (or experi-
enced fetal death) from 2000 to 2002, regardless of
maternal smoking status. Table 6 records the

frequencies with which the FLIC selected the 2- through
7-component models as well as the overall estimates of
component proportions, means, and standard deviations
for each of these models. The 6-component model was
overwhelmingly preferred by the FLIC. Figure 4 juxta-
poses the fitted 4-component and 6-component models
implied by the overall estimates. The four components
in the 4-component model are loosely analogous to the
second through fifth components in the 6-component
model, so that the main rationale for adding two more
components appears to be providing a more elaborate
description of the far left and right tails of the birth-
weight distribution.

Discussion

Our approach to modeling birthweight distribution is
distinguished from previous proposals in that the data
determine the number of components in the normal
mixture model. We have seen that data sets of size
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Table 5 Confidence Interval Coverage Probabilities in Simulation Studies

¢ Population Bias adjustment included Bias adjustment omitted
Size
Number & Percentage of Intervals Number & Percentage of Intervals
Containing Targets Containing Targets
(Mixture parameters) (Mixture parameters)
20 200,000 106 (88.3) 50 (41.7)
1,000,000 110 (91.7) 66 (55.0)
Infinite 105 (87.5) 64 (53.3)
2.5 200,000 110 (91.7) 61 (50.8)
1,000,000 112 (93.3) 75 (62.5)
Infinite 114 (95.0) 74 (61.7)
3.0 200,000 110 (91.7) 67 (55.8)
1,000,000 112 (93.3) 80 (66.7)
Infinite 115 (95.8) 83 (69.2)
35 200,000 111 (92.5) 68 (56.7)
1,000,000 115 (95.8) 83 (69.2)
Infinite 118 (98.3) 88 (73.3)
4.0 200,000 112 (93.3) 69 (57.5)
1,000,000 118 (98.3) 85 (70.8)
Infinite 118 (98.3) 91 (75.8)
45 200,000 113 (94.2) 74 (61.7)
1,000,000 118 (98.3) 87 (72.5)
Infinite 118 (98.3) 96 (80.0)
50 200,000 116 (96.7) 78 (65.0)
1,000,000 118 (98.3) 89 (74.2)
Infinite 118 (98.3) 98 (81.7)

The row with “C" = 2 and “Population size” = 200,000 identifies the numbers and percentages of confidence intervals containing their targets of mixture
parameters, based on 10 repetitions in each of which 25 samples of size 50000 were simulated from a 4-component normal mixture with 12 parameters; results
under the heading of “Bias adjustment included” are based on Equation (7) with C = 2, results under the heading of “Bias adjustment omitted” are based on
Equation (6) with C = 2, and the 25 samples of size 50000 had overlap consistent with a population size of 200,000. Other rows correspond to different choices

of C and/or population sizes.

50,000 for white singletons born to heavily-smoking
mothers typically warrant 4 components, while data sets
of size 50,000 for black singletons usually demand 6
components. These results underscore the idea that a
one size fits all paradigm — whether that be a 2-

Table 6 Another Example with Real Data

component normal mixture model or even the across
the board use of a 4-component normal mixture model
— may lead to unreasonable representations of birth-
weight distribution for some populations. Our approach,
on the other hand, allows birthweight distribution to be

Model Number of Fitted Mixture Density
FLIC votes

2 components 0 144 f(x:2533,1031) + .856 f(x;3241,452)

3 components 0 040 f(x;1300,487) + 833 f(x,3215,450) + .127 f(x;3427,656)

4 components 1 012 f(x;778,186) + .100 f(x,2292,683) + .760 f(x3198419) +
128 £(x;3668,511)

5 components 1 010 f(x;730,153) + .043 f(x;,1700,490) + .655 f(x;3200,435) +
282 f(x3289,538) + .010 f(x4175,439)

6 components 22 007 f(x,651,103) + .015 f(x1137,273) + 213 f(x2815,666) +

638 f(x3191,379) + .116 f(x3747,361) + .011 f(x:4340,409)

7 components

007 f(x,645,101) + .013 f(x;1083,246) + .108 f(x2415,574) +
496 f(x3091,372) + 332 £(x3456,383) + .038 f(x:4021,341)
+.006 f(x4613,347)

Parameters in 2-component through 7-component normal mixture models for birthweight distribution are estimated, based on 25 samples of size 50000 from
the population of black singletons in general. The numbers of samples for which the FLIC preferred the various models are also recorded.
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(a) Fitted 4—component model for black general based on 25 samples
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(b) Fitted 6-component model for black general based on 25 samples
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Figure 4 Four- and Six-Component Mixture Models for Birthweight Distribution. (@) A 4-component normal mixture model for birthweight
distribution, with parameters estimated by combining the results for 25 samples of size 50000 from the population of black singletons in
general, is shown. (b) A 6-component normal mixture model, with parameters estimated in the same manner, is depicted.

described differently for different populations. We also
note here that, although results have not been presented
in this paper for a full spectrum of populations, our
experience has been that data sets of size 50,000 usually
call for between 3 and 6 components.

The second paper in our two-part series will elucidate
the main advantage of our approach over the contami-
nated normal model [21,22] and the 2-component
model [23], namely its greater potential to expose het-
erogeneity in mortality risk. By this we mean that, even
at a fixed birthweight, some infants may be at higher
risk than others. While such heterogeneity seems plausi-
ble, if not altogether obvious, it may not be adequately
expressed by either the contaminated normal model or
the 2-component model. Hence, allowing a model to
have more than 2 components is not an intellectual
exercise or fitting the data for the sake of fitting the
data but rather a way to improve assessment of
mortality.

Since gestational age is sometimes considered in tan-
dem with birthweight [19,20], we now comment on its
relation to the methodology in this two-part series.

Our approach to modeling birthweight distribution
does not explicitly consider gestational age. However,
our experience is that the first component typically cap-
tures most very preterm births. For instance, the birth-
weight distribution for white singletons with gestational
ages > 37 weeks is well approximated by a 3-component
model whose components resemble the second through
fourth components of a 4-component model for white
singletons in general.

Even so, one may be interested in extending our
methodology to explicitly consider gestational age and/
or other covariates. We envisage at least two possible
extensions. The first would generalize the work of Fang,
Stratton, and Gage [19] in which the number of compo-
nents had been constrained a priori to two, while the
second would be novel.
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The first extension would be to model the joint prob-
ability density of birthweight and gestational age as a
bivariate normal mixture, with the number of compo-
nents determined from the data using the FLIC rather
than being constrained a priori to two. Then, instead of
estimating the mortality risk within each component as
a function of birthweight only, one could estimate the
mortality risk within each component as a function of
both birthweight and gestational age.

The second extension would be to retain the univari-
ate normal mixture model for birthweight distribution
but create auxiliary models to relate covariates, such as
gestational age, to mixture components. The appeal of
this extension is that it could allow some mixture com-
ponents to be placed in approximate correspondence
with identifiable subpopulations.

Conclusions

The present paper, the first in a two-part series, devel-
ops a new and flexible approach to modeling a birth-
weight distribution using a normal mixture model with
the number of components determined from the data
rather than fixed a priori. This approach allows the
detection of heterogeneity in birthweight that cannot be
found with a contaminated normal model or a 2-com-
ponent normal mixture model. Unlike a contaminated
normal model, our approach does not assume the exis-
tence of an interval of birthweights over which there are
no compromised pregnancies. Unlike a 2-component
normal mixture model, our approach does not constrain
birthweights within compromised pregnancies to be
normally distributed. Yet, better modeling of birthweight
distribution is a means to an end, namely a greater
understanding of fetal-infant mortality. The second
paper in our two-part series reveals that, when coupled
with methodology for estimating birthweight-specific
mortality curves within each component, this paper’s
approach to describing a birthweight distribution can
also reveal heterogeneity in mortality.

Methods
[Additional file 1] presents technical details on our
methodology and its implementation.

Additional material

Additional file 1: Technical Appendix. Additional file 1 presents
technical details on our methodology and its implementation.
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