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Abstract
Background  It remains unclear which early gestational biomarkers can be used in predicting later development of 
gestational diabetes mellitus (GDM). We sought to identify the optimal combination of early gestational biomarkers in 
predicting GDM in machine learning (ML) models.

Methods  This was a nested case-control study including 100 pairs of GDM and euglycemic (control) pregnancies 
in the Early Life Plan cohort in Shanghai, China. High sensitivity C reactive protein, sex hormone binding globulin, 
insulin-like growth factor I, IGF binding protein 2 (IGFBP-2), total and high molecular weight adiponectin and 
glycosylated fibronectin concentrations were measured in serum samples at 11–14 weeks of gestation. Routine 
first-trimester blood test biomarkers included fasting plasma glucose (FPG), serum lipids and thyroid hormones. Five 
ML models [stepwise logistic regression, least absolute shrinkage and selection operator (LASSO), random forest, 
support vector machine and k-nearest neighbor] were employed to predict GDM. The study subjects were randomly 
split into two sets for model development (training set, n = 70 GDM/control pairs) and validation (testing set: n = 30 
GDM/control pairs). Model performance was evaluated by the area under the curve (AUC) in receiver operating 
characteristics.

Results  FPG and IGFBP-2 were consistently selected as predictors of GDM in all ML models. The random forest model 
including FPG and IGFBP-2 performed the best (AUC 0.80, accuracy 0.72, sensitivity 0.87, specificity 0.57). Adding more 
predictors did not improve the discriminant power.

Conclusion  The combination of FPG and IGFBP-2 at early gestation (11–14 weeks) could predict later development 
of GDM with moderate discriminant power. Further validation studies are warranted to assess the utility of this simple 
combination model in other independent cohorts.
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Background
Gestational diabetes mellitus (GDM) is characterized by 
de novo glucose intolerance in the 2nd half of pregnancy 
affecting 7–15% of mothers worldwide [1, 2]. GDM 
increases the risks of pre-eclampsia, macrosomia and 
neonatal hypoglycemia [3, 4], and put both mothers and 
their offspring at increased risks of obesity, type 2 diabe-
tes and cardiovascular diseases in later life [5–8]. Early 
interventions in pregnancy may reduce the risk of GDM 
and adverse pregnancy outcomes [9, 10]. However, GDM 
is routinely diagnosed between 24 and 28 gestational 
weeks by an oral glucose tolerance test (OGTT) [11, 12], 
missing the optimal window for interventions as fetal and 
placental development have already occurred [13]. Iden-
tifying subjects at early gestation who are destined to 
develop GDM may inform early intervention strategies in 
improving maternal and child health.

A number of early gestational biomarkers have been 
reported in predicting later development of GDM, 
mostly notably, fasting plasma glucose (FPG) [14, 15], sex 
hormone-binding globulin (SHBG) [16, 17], adiponec-
tin [18–20], insulin-like growth factor I (IGF-I) and IGF 
binding protein 2 (IGFBP-2) [21, 22], high sensitivity C 
reactive protein (hs-CRP) [23, 24] and glycosylated fibro-
nectin [25, 26]. However, no single biomarker has dem-
onstrated sufficient discriminant power in clinical utility. 
It is unclear which combination is the optimal.

Most previous studies in predicting GDM employed 
conventional logistics regression models [27–29]. How-
ever, such models tend to ignore non-linear relationships 
and interactions between predictors, and the predictive 
performance may be suboptimal [30, 31]. Machine learn-
ing (ML) models may be helpful in alleviating these limi-
tations [32]. In the present study, we sought to explore 
the optimal combination of early gestational biomarkers 
in predicting later development of GDM in ML models 
considering six main candidate biomarkers: FBG, SHBG, 
IGF-I, IGFBP-2, hs-CRP and glycosylated fibronectin.

Materials and methods
Study design and subjects
We conducted a nested matched (1:1) case-control study 
in the Early Life Plan (ELP) cohort. The ELP cohort 
was initiated in Xinhua Hospital - a university affiliated 

maternity and pediatric care hospital in Shanghai for 
studies on the determinants of pregnancy outcomes and 
child health. Pregnant women were recruited during rou-
tine first trimester antenatal care visits. Eligibility crite-
ria were: (1) age 18 + years; (2) residents in Shanghai; (3) 
planned to have prenatal care and delivery at Xinhua 
Hospital. Trained research staff collected data through 
face-to-face interviews and medical chart reviews using 
standardized structured questionnaires. The study 
was approved by the medical research ethical commit-
tee of Xinhua Hospital, School of Medicine, Shanghai 
Jiao Tong University (approval no. XHEC-C-2013-001). 
Written informed consent was obtained from all study 
participants. The data collection questionnaire is pro-
vided in the appendix - Early Life Plan Cohort Study 
Questionnaire.

All GDM and controls were from the ELP cohort in 
subjects recruited between 2016/6 and 2019/02. GDM 
was diagnosed according to the International Association 
of Diabetes and Pregnancy Study Groups (IADPSG) cri-
teria [33]: if any one of the blood glucose values was at 
or above the following thresholds in the routine 75 g oral 
glucose tolerance test (OGTT) at 24–28 weeks of gesta-
tion: fasting 5.1 mmol/L, 1-hour 10.0 mmol/L and 2-hour 
8.5 mmol/L. Controls were women with a euglycemic 
pregnancy.

The eligibility criteria for the present study were: (1) 
Han ethnicity (the majority ethnic group); (2) maternal 
age 20–45 years; (3) natural conception; (4) singleton 
pregnancy; (5) no severe pre-pregnancy illnesses (e.g., 
type 1 or type 2 diabetes) or life-threatening gestational 
complications (e.g., preeclampsia); (6) serum specimen at 
11–14 weeks of gestation available for biomarker assays. 
All eligible GDM women with complete data and speci-
men collected by Feb 2019 (n = 100) were included. Con-
trols were randomly sampled among all eligible subjects 
recruited up to Feb 2019 in the ELP cohort, and matched 
to cases (1:1) by maternal age (within 1 year), pre-preg-
nancy BMI (within 1 kg/m2) and gestational age (within 
1 week) at blood sampling. Therefore, a total of 200 sub-
jects (100 pairs of GDM/control) constituted the study 
sample. Figure S1 presents the flowchart in the selection 
of study subjects.

Novelty statements
	• It remains unclear which early gestational biomarkers can be used in predicting later development of 

gestational diabetes mellitus.
	• The present study demonstrates that the combination of fasting plasma glucose and insulin-like growth factor 

binding protein 2 at early gestation can predict later development of gestational diabetes with moderate 
discriminant power.
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Blood samples
Maternal fasting blood samples were collected during 
the first prenatal care visits at 11–14 weeks of gestation. 
Trained technicians collected blood samples follow-
ing standardized operating procedures. Fasting morn-
ing venous blood samples were collected in multiple 
tubes for serum (non-coagulant) and plasma (EDTA). 
The blood samples were centrifuged (Beckman Coul-
ter Allegra X-15R, USA) at 4 °C, 4000 r/min for 10 min. 
The separated serum and plasma samples were stored at 
− 80 °C until assays.

Biochemical assays
In all biomarker assays, the lab technicians were blinded 
to the clinical status (GDM or not) of study subjects. 
Serum insulin-like growth factor (IGF)-I and insulin-
like growth factor binding protein 2 (IGFBP-2) were 
measured by ELISA kits (Crystal Chem, Lllinois, USA) 
and the absorbance was determined using a microplate 
spectrophotometer (Beckman CX7, USA). Serum high 
sensitivity C reactive protein (hs-CRP) was measured by 
an ELISA kit (Anogen, Ontario, Canada). Serum HMW 
and total adiponectin were measured by an ELISA kit 
(ALPCO, Salem, NH, USA). Serum glycosylated fibro-
nectin was measured by an ELISA kit (Anshlabs, Web-
ster, USA). Serum sex hormone binding globulin (SHBG) 
was measured by an automated chemiluminescent assay 
(Kangrun Biotech, Guangzhou, China). The limits of 
detection were 2 ng/mL for IGF-I, 2 ng/mL for IGFBP-
2, 0.03 mg/L for CRP, 0.034 ng/mL for HMW and total 
adiponectin, 2.85 ng/mL for glycosylated fibronectin, and 
0.1 nmol/L for SHBG, respectively. The intra-assay and 
inter-assay coefficients of variation were in the ranges of 
0.8-5.4% for IGF-I, 0.1-3.3% for IGFBP-2, 9.9-14.7% for 
hs-CRP, 0.5-4.5% for HMW and total adiponectin, 1.3-
2.5% for glycosylated fibronectin, and < 8% for SHBG, 
respectively.

Routine first-trimester prenatal blood test biomarkers 
included fasting plasma glucose (FPG), serum lipids [tri-
glyceride, total cholesterols (TC)] and thyroid hormones 
[thyroid stimulating hormone (TSH); free thyroxine 
(FT4); free triiodothyronine (FT3)], and were measured 
in the clinical biochemistry laboratory of Xinhua hospital 
(a nationally accredited clinical biochemistry lab) follow-
ing standardized operating protocols.

Selection of predictors
Potential predictors included the measured serum bio-
markers (hs-CRP, IGFBP-2, IGF-1, SHBG, glycosylated 
fibronectin, total and HMW adiponectin) and available 
biomarkers from routine clinical tests (hemoglobin, FPG, 
TG, TC, TSH, FT4 and FT3) at 11–14 weeks of gestation, 
and maternal characteristics (parity, family history of 

diabetes or hypertension, systolic blood pressure (SBP), 
diastolic blood pressure (DBP)).

Four models were employed in the selection of pre-
dictors/features that distinguish GDM from euglycemic 
pregnancies, including stepwise logistic regression (LR), 
support vector machine-recursive feature elimination 
(SVM-RFE), the least absolute shrinkage and selection 
operator (LASSO) and random forest. The MASS pack-
age in R was used for stepwise LR. SVM-RFE is a ML 
technique that trains a subset of features from different 
categories to shrink the feature set and find the most 
predictive features [34]. The SVM-RFE was applied in 
the selection of predictive features via a 10-fold cross-
validation, using the e1071 package in R. LASSO is a 
regression method that performs both feature selection 
and regularization to enhance the prediction accuracy 
[35]. LASSO regression with a 10-fold cross-validation 
was performed to determine the optimal lambda using 
the glmnet package in R. The random forest method is a 
common method for ranking variable importance based 
on prediction performance [36]. For each trained tree, 
out-of-bag prediction performance was calculated before 
and after permutation of the values of each predictor 
variable, and the differences were then averaged over all 
trees. The randomForest package in R was used to imple-
ment the random forest algorithm. Ultimately, features 
that were selected by all algorithms were retained in the 
ML prediction models; other features that were selected 
by at least 2 algorithms were assessed on whether their 
additions could improve the predictions.

Prediction models
Conventional LR and five ML models (ML-LR, SVM, 
k-nearest neighbor (KNN), LASSO and random forest) 
were employed in predicting GDM. ML-LR iteratively 
identifies the strongest combination of variables with the 
greatest probability of detecting the observed outcomes. 
The SVM aims to create a decision boundary between 
two classes that enables the prediction from one or more 
feature vectors. KNN algorithm is a nonparametric 
approach for classification, and it integrates the informa-
tion about the K neighbor points for the classification of 
subjects. The random forest model is a regression tree 
technique using bootstrapped samples and a random 
subset of features to achieve a high degree of predictive 
accuracy. In all ML models, we tuned the hyperparam-
eters to select the optimal combination with the highest 
mean AUC using a 10-fold cross validation via Grid-
SearchCV function in the “sklearn” package in Python: 
ML-LR (hyperparameters: penalty “L2”, solver “liblinear”, 
C “0.001”), KNN (hyperparameters: number of neighbors 
to use “14”, weight function “uniform”, algorithm used to 
predict the nearest neighbors “auto”, leaf size “30”), SVM 
(kernel parameter “linear”, C “1”, gamma “scale”), and 
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random forest (hyperparameters: the number of trees 
in the forest “256”, criterion to measure the quality of a 
split “gini”, the maximum depth of the tree “3”), LASSO 
(hyperparameters: penalty”L1”, solver “liblinear”, C ”0.5”).

Of the 100 pairs of GDM/control subjects, 70 pairs 
(70%) were randomly selected as the training set, and 
the remaining 30 pairs (30%) were used as the testing set 
to evaluate the performance of the prediction models. 
To evaluate the diagnostic performance of each model, 
six metrics including area under the curve (AUC) in 
receiver-operating-characteristics (ROC), accuracy, pre-
cision, sensitivity, specificity and F1 score, were mea-
sured in the testing set. AUC (range 0 to 1) is a widely 
used index to describe a model’s ability to predict out-
comes. True positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN) numbers were used in 
calculating the accuracy, precision, sensitivity, specificity 

and F1 score: accuracy = (TP + TN)/(TP + FP + TN + FN), 
precision = TP/(TP + FP), sensitivity = TP/(TP + FN), spec-
ificity = TN/(TN + FP), the F1 score is the harmonic mean 
of precision and sensitivity, F1 = 2TP/(2TP + FN + FP) 
(range 0–1).

Statistical analysis
Mean ± SD was presented for continuous variables, and 
frequency (%) was presented for categorical variables. 
Paired t-test and Chi-square test were used to examine 
the differences between GDM and control groups in con-
tinuous and categorical variables respectively. General-
ized linear models were used to comparing circulating 
concentrations of biomarkers between GDM and con-
trol subjects adjusting for maternal and pregnancy char-
acteristics. Logistic regression was used to explore the 
associations of GDM with biomarkers. A stepwise regres-
sion was used in the selection of the co-variables in final 
regression models (retaining co-variables with P < 0.2 
only).

ML prediction models were fitted using R packages 
(MASS, e1071, glmnet, randomForest) in R studio and 
Python (Sklearn). Missing data were rare in all biomark-
ers (0–4%), and were imputed/replaced by the respective 
mean values to maintain consistent sample sizes in all 
models. All data analyses were performed using R Studio 
(version 4.2) and Python (version 3.10.9). P value < 0.05 
(two-tailed) was considered statistically significant.

Results
Table  1 presents the characteristics of study subjects. 
There were no differences between GDM and control 
subjects in maternal age, primiparity, pre-pregnancy 
BMI, family history of diabetes or hypertension. FPG, 
SBP and DBP at 11–14 weeks of gestation were all higher 
in GDM vs. controls (all p < 0.05), while there were no dif-
ferences in serum levels of TSH, FT3, FT4, TG and TC. 
Comparing subjects in the training (70 pairs) vs. testing 
sets for ML models (Table S1), there were no differences 
in all maternal characteristics and biomarkers, except for 
that average FPG tended to be slightly higher in the train-
ing set (5.0 ± 0.4 vs. 4.8 ± 0.4 mmol/L, P = 0.027).

Adjusting for family history of diabetes and gestational 
age at blood sampling (other covariates did not affect 
the comparisons), serum concentrations at early gesta-
tion (11–14 weeks) were lower in GDM vs. euglycemic 
pregnancies for IGFBP-2 (74.7 ± 25.8 vs. 87.2 ± 32 ng/
ml, P = 0.005), HMW adiponectin (2147.7 ± 1434.1 vs. 
2480.5 ± 1309.3 ng/ml, p = 0.03) and SHBG (157.0 ± 42.6 
vs. 168.5 ± 40.3 nmol/L, P = 0.05) (Table  2), but higher 
for hs-CRP (5.54 ± 5.25 vs. 4.60 ± 4.87  mg/L, P = 0.03) 
and IGF-I/IGFBP-2 ratios (0.8 ± 0.6 vs. 0.6 ± 0.4, p = 0.03). 
There were no differences in serum glycosylated fibro-
nectin (381.1 ± 211.5 vs. 375.7 ± 193.8  μg/mL, P = 0.80), 

Table 1  Characteristics of study subjects in GDM and 
euglycemic (control) singleton pregnancies

GDM
(n = 100)

Control 
(n = 100)

P *

Age (years) 32.1 ± 3.9 32.0 ± 3.8 0.96
  >35 y 27 (27.0) 25 (25.0) 0.75
Primiparity 54 (54.0) 53 (53.0) 0.89
Family history of diabetes 2 (2.0) 0 (0.0) 0.15
Family history of hypertension 37 (37.0) 33 (33.0) 0.55
Pre-pregnancy BMI (kg/m2) 23.5 ± 3.1 23.5 ± 3.1 1.00
  Pre-pregnancy BMI category 0.68
    BMI < 24 53 (53.0) 58 (58.0)
    24.0 = < BMI < 28 40 (40.0) 34 (34.0)
    BMI > 28 7 (7.0) 8 (8.0)
  GA at blood sampling 13.2 ± 1.2 13.0 ± 1.1 0.15
Routine blood tests 11–14 weeks
  FPG 5.1 ± 0.4 4.8 ± 0.3 < 0.001
  SBP (mmHg) 121.5 ± 12.5 115.6 ± 12.0 0.001
  DBP (mmHg) 73.3 ± 8.5 70.6 ± 8.2 0.024
  Triglyceride (mmo/L) 1.6 ± 0.6 1.5 ± 0.6 0.29
  TC (mmo/L) 4.9 ± 0.8 4.7 ± 0.8 0.08
  hemoglobin (g/L) 123.4 ± 8. 8 123.3 ± 7.9 0.95
  TSH (uIU/ml) 1.4 ± 1.0 1.2 ± 0.8 0.21
  FT4 (pmol/l) 15.2 ± 2.3 15.2 ± 2.1 0.92
  FT3 (pmol/l) 4.7 ± 0.6 4.6 ± 0.6 0.11
75 g OGTT (24-28weeks)
  Plasma glucose (mmo/L)
  fasting 5.1 ± 0.4 4.4 ± 0.4 < 0.001
  1 h 9.2 ± 1.9 7.8 ± 1.2 < 0.001
  2 h 7.3 ± 1.7 6.4 ± 1.2 < 0.001
Data presented are Mean ± SD or n (%)

GDM, gestational diabetes mellitus; GA, gestational age; BMI, body mass index; 
FPG, fasting plasma glucose; SPB, systolic blood pressure; DBP, diastolic blood 
pressure; TC, total cholesterol; TSH, thyroid stimulating hormone; FT4, free 
thyroxine; FT3, free triiodothyronine; OGTT, oral glucose tolerance test

*P-values in comparisons of the two groups in t-tests for continuous variables 
and Chi-square tests for categorical variables

P values in bold, p < 0.05
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IGF-I (52.2 ± 25.4 vs. 48.8 ± 19.8 ng/ml, P = 0.48) and 
total adiponectin (5489.8 ± 1989.4 vs. 6107.4 ± 2437.5 ng/
ml, P = 0.16) concentrations in GDM and euglycemic 
pregnancies.

Higher serum IGFBP-2 and SHBG concentrations were 
associated with lower odds of GDM, while higher FPG, 
IGF-1/IGFBP-2 ratio, SBP and DBP were associated with 
higher odds of GDM (Table S2). Other observed bio-
markers were not associated with GDM.

The four ML algorithms selected different unique 
sets of predictors. The LR identified 5 predictors (FPG, 
IGFBP-2, TSH, FT3, hemoglobin), the LASSO identi-
fied 2 predictors (FPG, IGFBP-2), SVM-RFE identified 5 
predictors (FPG, IGFBP-2, TSH, Hs-CRP, hemoglobin), 
and random forest identified 5 predictors (FPG, IGFBP-2, 
Hs-CRP, IGF-I/IGFBP-2 ratio, HMW adiponectin) (Table 
S3). Two predictors (FPG, IGFBP-2) were selected in all 
the four ML methods. TSH, Hs-CRP and hemoglobin 
were each selected twice in the four ML models.

Prediction performance metrics were assessed in the 
training and testing sets in 4 different models: Model 1: 
FPG, IGFBP-2; Model 2: FPG, IGFBP-2, TSH; Model 3: 
FPG, IGFBP-2, hs-CRP; and Model 4: each ML algorithm 
selected set of predictors (Table 3). In the testing sets of 
all models, the combination of FPG and IGFBP-2 only 
(model 1) outperformed other combinations of features 
(Models 2, 3 and 4). The random forest model using FPG 
and IGFBP-2 was the optimal model with the highest 
AUC (0.8) among all the models with sensitivity = 87%. 
Other predictive performance metrics for these models 
are shown in Table 4. The addition of other predictors did 
not further improve the prediction performance.

The feature importance of variables for predicting ges-
tational diabetes in random forest models is presented in 
Figure S2, and the SHAP (SHapley Additive exPlanations) 
summary plots illustrating the importance and impact 
of each feature in predicting gestational diabetes is pre-
sented in Figure S3. The FPG was the most important 
and impactful predictor, and IGFBP-2 ranked the second.

Discussion
Main findings
Our results suggest that at early gestation (11–14 weeks), 
a combination of FPG and IGFBP-2 could predict GDM 
with moderate discriminant power.

Most predictive biomarkers
ML model analyses showed that FPG and IGFBP-2 at 
early gestation were always selected in all ML mod-
els, and represented the minimal set of biomarkers in 
predicting GDM. FPG in the first-trimester is a known 
biomarker strongly predictive of GDM [14, 37, 38]. A 
prospective cohort study (n = 450) reported an AUC of 
0.61 for FPG [23], while in a large retrospective cohort 
(n = 48,444), the AUC was 0.77 for first-trimester FPG 
in predicting GDM [15]. These consistent findings high-
lighted the importance of first trimester FPG in predict-
ing GDM.

Circulating IGFBP-2 levels are lower in GDM vs. eug-
lycemic pregnancies throughout the gestation [21, 39, 
40]. Consistent with our results, low IGFBP-2 in early 
gestation was observed to be strongly predictive of later 
development of GDM in a previous study [21]. IGFBP-2 
overexpression has been associated with reduced sus-
ceptibility to obesity and diabetes via inhibition of adipo-
genesis and stimulation of insulin sensitivity in mice [41, 
42], suggesting a critical role of IGFBP-2 in metabolic 
homeostasis. There is a lack of post-prandial fluctuations 
in IGFBP-2 concentrations [43], rendering IGFBP-2 a 
promising early gestational biomarker of GDM.

Prediction models
In our study, the best prediction model was a combina-
tion of FPG and IGFBP-2, with moderate discriminant 
power (AUC = 0.80) in identifying GDM. Some other 
observed biomarkers and features, although were asso-
ciated with GDM, but their additions could not improve 
the predictions or discriminant power.

A number of studies have reported that biomarkers in 
early pregnancy may improve the accuracy in predict-
ing GDM upon routine clinical risk factors. In a large 
multiethnic cohort, a model combining clinical risk fac-
tors (previous GDM, family history of diabetes, South/
East Asian ethnicity, parity, maternal age, and BMI) and 
biomarkers (pregnancy-associated plasma protein A, 
uterine artery pulsatility index, MAP, and free β-human 

Table 2  Serum biomarkers in the first trimester (11–14 weeks) in 
GDM and euglycemic (control) pregnancies

GDM Control Crude Adjusted
(n = 100) (n = 100) P P

Hs-CRP (mg/L) 5.54 ± 5.25 4.60 ± 4.87 0.19 0.03
GFN (μg/mL) 381.1 ± 211.5 375.7 ± 193.8 0.83 0.80
IGF-I (ng/ml) 52.2 ± 25.4 48.8 ± 19.8 0.32 0.48
IGFBP-2 (ng/ml) 74.7 ± 25.8 87.2 ± 32 0.004 0.005
IGF-I/IGFBP-2 ratio 0.8 ± 0.6 0.6 ± 0.4 0.03 0.03
SHBG (nmol/L) 157.0 ± 42.6 168.5 ± 40.3 0.07 0.05
Adiponectin
HMW (ng/ml) 2147.7 ± 1434.1 2480.5 ± 1309.3 0.11 0.03
Total (ng/ml) 5489.8 ± 1989.4 6107.4 ± 2437.5 0.07 0.16
Data presented are mean ± SD.

GDM, gestational diabetes mellitus; Hs-CRP, High Sensitivity C Reactive Protein; 
GFN, glycosylated fibronectin; IGF-I, insulin-like growth factor-I; IGFBP-2, 
insulin-like growth factor binding protein 2; SHBG, sex hormone binding 
globulin; HMW, high molecular weight

Crude p values were from paired t-tests in the comparisons of log-transformed 
biomarker data. Adjusted p values were from generalized linear models 
adjusting for maternal family history of diabetes and gestational age at blood 
sampling; other co-variables were excluded since they were similar and did not 
affect the comparisons (all p > 0.2)

P values in bold, p < 0.05
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chorionic gonadotropin) achieved an AUC of 0.91 in 
predicting GDM [44]. In a large retrospective Chinese 
cohort, a 7-variables model (maternal age, family his-
tory of diabetes, multiple pregnancy, GDM history, FPG, 
HbA1c and triglyceride) achieved an AUC of 0.77 [45]. In 
a nested case-control study (GDM 80, control 300), the 
addition of SHBG and adiponectin might improve pre-
diction beyond clinical risk factors (AUC: 0. 84 vs. 0.79) 
[46]. The AUC of a model including clinical factors (age, 
gestational age at sampling, BMI, ethnicity, family history 
of diabetes, and prior GDM) plus HDL cholesterol and 
tissue plasminogen activator was reported to be 0.86 in 
predicting GDM [47]. In a study of 1843 Belgian women, 
the AUC was 0.76 in a model including clinical factors, 
fasting plasma glucose, triglycerides and HbA1c [48]. A 
small study (n = 20 GDM cases) reported that the com-
bination of soluble CD163, insulin, tumor-necrosis fac-
tor alpha, placental protein 13, and pregnancy associated 

plasma protein A at the first trimester could predict DM 
with AUC = 0.94 [49]. In a nested case-control study, the 
AUC was 0.70 in a model including chemerin, leptin, 
secreted frizzled-related protein 4 and adiponectin [50]. 
The AUC was 0.87 in predicting GDM in a model includ-
ing total cholesterol, triglycerides, insulin, homeostatic 
model assessment, low density lipoprotein and tissue 
plasminogen activator in another small study (16 GDM 
cases) [51]. These variable findings may be partly attrib-
utable to the inclusion of different candidate biomarkers. 
In contrast, our model is much simpler, with 2-biomark-
ers only achieving an AUC of 0.80. We have considered 
the most promising candidate biomarkers according to 
up-to-date literature, and our study demonstrates the 
potential usefulness of a parsimonious model in predict-
ing GDM using two biomarkers only (FPG and IGFBP-2).

Table 3  AUC and accuracy of conventional logistic regression (LR) and 5 machine learning (ML) models in predicting GDM by early 
gestational biomarkers

Training set Testing set
AUC Accuracy AUC Accuracy

Model 1
  LR 0.78 0.72 0.73 0.67
  ML-LR 0.76 0.66 0.77 0.75
  KNN 0.77 0.70 0.77 0.68
  SVM 0.76 0.68 0.77 0.73
  RF 0.88 0.76 0.80 0.72
  Lasso 0.76 0.67 0.77 0.73
Model 2
  LR 0.79 0.70 0.72 0.67
  ML-LR 0.77 0.69 0.77 0.75
  KNN 1.00 1.00 0.71 0.63
  SVM 0.77 0.67 0.76 0.72
  RF 1.00 0.99 0.71 0.65
  Lasso 0.77 0.68 0.76 0.72
Model 3
  LR 0.77 0.70 0.72 0.65
  ML-LR 0.76 0.66 0.75 0.70
  KNN 0.76 0.71 0.74 0.65
  SVM 0.77 0.69 0.76 0.68
  RF 0.88 0.79 0.74 0.65
  Lasso 0.76 0.66 0.75 0.68
Model 4
  LR 0.81 0.75 0.70 0.65
  ML-LR 0.79 0.72 0.74 0.72
  KNN 0.75 0.71 0.73 0.68
  SVM 0.70 0.66 0.72 0.65
  RF 0.91 0.81 0.77 0.73
  Lasso 0.76 0.67 0.77 0.73
AUC, area under the curve; KNN, k-nearest neighbor; LR, logistic regression; SVM, support vector machine; RF, random forest; FPG, fasting plasma glucose; HMW, high 
molecular weight; IGFBP-2, insulin-like growth factor binding protein 2; hs-CRP, high sensitivity C reactive protein; thyroid stimulating hormone (TSH).

Model 1: FPG + IGFBP2; Model 2: FPG + IGFBP2 + TSH; Model 3: FPG + IGFBP2 + Hs-CRP;

Model 4: LR or ML-LR: FPG + IGFBP2 + TSH + FT3 + Hemoglobin, KNN: FPG + IGFBP2 + hs-CRP + IGF-I/IGFBP-2 ratio + HMW adiponectin, SVM: FPG + IGFBP2 + TSH + hs-
CRP + Hemoglobin, Random forest: FPG + IGFBP2 + hs-CRP + IGF-I/IGFBP-2 ratio + HMW adiponectin, Lasso: FPG + IGFBP2.
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Conventional LR vs. ML models
A meta-analysis showed that LR was the most commonly 
used model in predicting GDM: 25 studies using conven-
tional LR, vs. 5 studies using ML with an overall pooled 
AUC of 0.89 [29]. Our ML model requires the smallest 
number of predictors (only two). In a large prospective 
cohort, ML method (XGBoost) achieved a higher AUC 
than conventional LR in predicting GDM [52]. On the 
other hand, two other studies indicated that ML did not 
outperform conventional LR in predicting GDM [45, 53]. 
In our study, all ML models achieved higher AUC than 
conventional LR. ML models may perform differently 
in different datasets and algorithms [53–56]. We tested 
five common ML algorithms, and the random forest was 
identified as the best model with the highest AUC.

Limitations
The study was based on a large pregnancy cohort. The 
proposed ML prediction model requires two predictors 

only, and that adding various clinical features or other 
biomarkers did not improve the predictions. All study 
subjects are Chinese. More studies in other ethnicity 
groups are required to understand the generalizability of 
the study findings.

In summary, the combination of FPG and IGFBP-2 at 
early gestation can predict later development of GDM 
with moderate discriminant power. Further validation 
studies are warranted to assess the utility of this simple 
combination model in other independent cohorts in the 
quest for a potentially useful clinical risk monitoring tool.
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