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Abstract
Background Postpartum depression is a complex mental health condition that often occurs after childbirth and 
is characterized by persistent sadness, anxiety, and fatigue. Recent research suggests a metabolic component to 
the disorder. This study aims to investigate the causal relationship between blood metabolites and postpartum 
depression using mendelian randomization (MR).

Methods This study used a bi-directional MR framework to investigate the causal relationship between 1,400 
metabolic biomarkers and postpartum depression. We used two specific genome-wide association studies datasets: 
one with single nucleotide polymorphisms data from mothers diagnosed with postpartum depression and another 
with blood metabolite data, both of which focused on people of European ancestry. Genetic variants were chosen 
as instrumental variables from both datasets using strict criteria to improve the robustness of the MR analysis. 
The combination of these datasets enabled a thorough examination of genetic influences on metabolic profiles 
associated with postpartum depression. Statistical analyses were conducted using techniques such as inverse 
variance weighting, weighted median, and model-based estimation, which enabled rigorous causal inference from 
the observed associations. postpartum depression was defined using endpoint definitions approved by the FinnGen 
study’s clinical expert groups, which included leading experts in their respective medical fields.

Results The MR analysis identified seven metabolites that could be linked to postpartum depression. Out of these, 
one metabolite was found to be protective, while six were associated with an increased risk of developing the 
condition. The results were consistent across multiple MR methods, indicating a significant correlation.

Conclusions This study emphasizes the potential of metabolomics for understanding postpartum depression. The 
discovery of specific metabolites associated with the condition sheds new insights on its pathophysiology and opens 
up possibilities for future research into targeted treatment strategies.
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Introduction
Postpartum depression is a serious mental health condi-
tion that affects new mothers [1, 2]. It is characterized 
by persistent feelings of sadness, anxiety, and fatigue, 
making it difficult for the affected women to perform 
daily care activities for themselves or their newborns [3]. 
Other symptoms may include altered sleeping and eat-
ing habits, extreme irritability, and feeling of worthless-
ness or guilt [4]. This condition has an impact not only 
on the mother’s health but also on the baby’s bonding 
and development [5]. Early detection and treatment are 
critical to improve outcomes for both mother and child 
[6, 7]. The cause of postpartum depression is not fully 
understood, but recent research has begun to look into 
the role of metabolic changes in its development. Spe-
cifically, changes in blood metabolites have been linked 
to the onset and progression of postpartum depression, 
implying a potential metabolic component to the disor-
der [8–12]. However, the causality of this relationship 
remains uncertain.

Blood metabolomics, which involves a thorough exam-
ination of metabolites in biological systems, has emerged 
as a valuable methodology for understanding the com-
plex interplay between genetic factors, environmental 
influences, and disease processes [13–15]. This analyti-
cal approach, which examines metabolite configurations, 
provides important insights into the metabolic anomalies 
associated with postpartum depression. Nonetheless, the 
field’s reliance on observational studies frequently pres-
ents difficulties due to confounding factors and issues of 
reverse causation.

The use of mendelian randomization (MR) in this con-
text provides a distinct methodological advantage. MR 
uses genetic variants as instrumental variables (IVs), 
providing a novel way to decipher causal relationships 
between various exposures and outcomes while avoid-
ing the inherent confounders and biases found in obser-
vational studies. Our study uses the MR paradigm to 
investigate the potential causal relationship between 
metabolomic profiles and postpartum depression. Con-
sequently, this study stands out as a pioneering effort in 
this emerging research arena, with the potential to signif-
icantly enrich our understanding of postpartum depres-
sion and its broader implications.

Materials and methods
Study Methodology
In this study, we used a bi-directional two-sample MR 
approach to investigate the hypothesized causal rela-
tionship between 1,091 blood-derived metabolites, 309 
metabolite ratios, and postpartum depression [16]. The 
MR paradigm uses genetic variants that are harnessed 
as surrogate markers for potential risk factors. To derive 

credible causal inferences using IVs, three cardinal tenets 
must be followed:

1.  There is a direct relationship between genetic 
variation and exposure.

2.  There is no link between these genetic variants and 
confounders that could influence the exposure-
outcome interaction.

3.  Exclusiveness in the impact of genetic variation-
driven exposure on outcome.

Data sources for postpartum depression through genome-
wide association studies (GWAS)
Summary statistics pertinent to postpartum depression 
were obtained from the GWAS database (https://gwas.
mrcieu.ac.uk/). For postpartum depression, the sample 
consisted of 67,205 mothers with complete postpartum 
follow-up records, including 7,604 cases and 59,601 con-
trols, totaling approximately 16,376,275 single nucleo-
tide polymorphisms (SNPs). The study’s population 
was composed of people of European descent. Postpar-
tum depression was defined using endpoint definitions 
approved by the FinnGen study’s clinical expert groups, 
which included leading experts in their respective medi-
cal fields [17]. The FinnGen study established a strong 
framework for defining medical conditions, ensuring 
consistency and reliability in our diagnostic criteria [18, 
19].

Sources of GWAS data for 1,091 blood metabolites and 309 
metabolite ratios
The GWAS database, available at https://gwas.mrcieu.
ac.uk/, served as a repository for summary statistics 
across a wide range of conditions. The GWAS summary 
datasets for 1,400 metabolites were extracted from the 
seminal study conducted by Chen et al [16], which rep-
resented the most extensive exploration to date of genetic 
influences on human serum metabolism. The exhaustive 
list of these 1,400 metabolites is provided in Supplemen-
tary Table S1. The demographic focus of this study was 
on people with European ancestry.

IVs Selection
Consistent with the current scientific literature, we set 
a significance threshold of IVs related to each trait at 
1 × 10− 5 [20, 21]. This process was made easier by using 
the R package “TwoSampleMR” [22], which helped refine 
the selection of SNPs.

a) Clumping for Linkage Disequilibrium.

To address linkage disequilibrium (LD) between 
SNPs, we set a threshold of r^2 at 0.001 and specified a 

https://gwas.mrcieu.ac.uk/
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clumping proximity of 10,000 kb. LD measures the non-
random association of alleles at different loci in a popula-
tion, with an r^2 value of 1 indicating complete LD and a 
value of 0 indicating no LD.

b) Assessment of Instrument Strength.

To mitigate bias stemming from weak instruments, we 
calculated the R2  and F statistics for each SNP. The R2  
statistic quantifies the proportion of exposure variance 
explained by the IV, providing insight into the strength of 
the instrument. Conversely, the F  statistic evaluates the 
overall instrument strength, incorporating both the R2  
value and the sample size of the exposure group. SNPs 
with an F-statistic below 10 were excluded from subse-
quent analyses to minimize the risk of weak instrument 
bias, which can lead to inflated type I error rates and 
unreliable estimates.To calculate R2  and F  statistics, fol-
low the steps below:

 

R2 =
2β2

exposureeafexposure(1−eafexposure)
2β2

exposureeafexposure(1−eafexposure)+2se2
exposuresamplesizeexposureeafexposure(1−eafexposure)

 
F =

R2 (samplesizeexposure − 2)
1 − R2

In these formulae:

  • βexposure represents the beta coefficient of exposure,
  • eafexposure is the effect of allele frequency of exposure.
  • seexposure represents the standard error of exposure.
  • samplesizeexposure indicates the sample size of the 

exposure group.

We excluded SNPs with an F-statistic of less than 10 from 
our analysis to avoid weak instrument bias, which can 
inflate type I error rates and produce unreliable estimates 
[23, 24].

Statistical approach
Analyses were conducted using the R programming envi-
ronment (version 4.3.1). The investigation into the causal 
relationship between 1,400 metabolites and postpartum 
depression was executed using methodologies such as 
inverse variance weighting (IVW) [25], weighted median 
[26], and mode-based techniques [27], primarily through 
the TwoSampleMR package. Cochran’s Q statistic was 
used to investigate heterogeneity among the IVs. In cases 
of significant heterogeneity, the random-effects IVW 
model replaced the fixed-effects model. The MR-Egger 
method was used to address potential horizontal pleiot-
ropy, with the intercept serving as an indicator of its exis-
tence [28]. Furthermore, the MR-PRESSO approach was 
used to refine the analysis by identifying and eliminating 

outliers that could be attributed to pleiotropy. Funnel 
plots were used to ensure the consistency and reliability 
of the findings. To summarize, the screening of blood 
metabolites for potential causal impact on postpartum 
depression was stringently conducted based on multiple 
criteria: (1) a significant p-value in the primary analy-
sis (IVW derived p < 0.05 and FDR < 0.5), (2) consistent 
direction and magnitude across the five MR methods, 
and (3) absence of heterogeneity or horizontal pleiotropy 
in the MR results.

Results
Probing the Impact of Metabolites on Postpartum 
Depression.

Based on the predefined criteria for selecting IVs, a 
comprehensive set of 19,541 SNPs were used as IVs in 
this study. Detailed information about these chosen SNPs 
and their characteristics are contained in Supplemental 
Table S2.

An MR study identified seven metabolites. One of 
these metabolites showed protective effects against post-
partum depression, while seven metabolites were found 
to have potential pathogenic roles (Figs. 1 and 2). The full 
results and detailed data of the MR analysis are contained 
in Supplemental Table S3.

The IVW analysis for these metabolites yielded an 
aggregated score of:

2-o-methylascorbic acid levels (OR 1.10, 
p = 0.003188963),

N-formylmethionine levels (OR 1.17, p = 0.003186648),
2-hydroxyphenylacetate levels (OR 1.12, 

p = 0.003777128),
Inosine levels (OR 1.14, p = 0.002786266),
Inosine to EDTA ratio (OR 1.14, p = 0.001912067),
Carnitine to acetylcarnitine (C2) ratio (OR 1.26, 

p = 0.001447855).
Serine to alpha-ketobutyrate ratio (OR 0.78, 

p = 6.20E-05).
The Cochran’s IVW Q test, as detailed in Supplemental 

Table S4, revealed no significant heterogeneity in the IVs 
(p > 0.05). Furthermore, the MR-Egger regression inter-
cept analysis, as shown in Supplemental Table S5, found 
no significant directional horizontal pleiotropy (p > 0.05). 
Furthermore, the MR-PRESSO global test (results in 
Supplemental Table S6) found no significant outliers, 
indicating a negligible presence of horizontal pleiotropy 
in the relationship between metabolites and postpartum 
depression (p > 0.05).

Notably, the IVW analysis produced significant esti-
mates (p < 0.05), and the direction and magnitude of the 
estimates were consistent across four other analytical 
methods. (Fig. 3).
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Discussion
In this study, we used a comprehensive approach that 
included GWAS data to investigate the causal relation-
ships of 1,091 blood metabolites and 309 metabolite 
ratios with postpartum depression using a strong MR 
framework. Our study identified specific metabolites that 
were linked to an increased risk of postpartum depres-
sion. Notably, the ratio of Serine to alpha-ketobutyrate 
was found to be inversely correlated with the risk of 
postpartum depression. Conversely, a genetic predispo-
sition to higher levels of 2-o-methylascorbic acid, N-for-
mylmethionine, 2-hydroxyphenylacetate, and Inosine, as 
well as the ratios of Inosine to EDTA and Carnitine to 
acetylcarnitine (C2), has been linked to an increased risk 

of postpartum depression. These novel findings contrib-
ute significantly to a better understanding of postpartum 
depression’s pathophysiology, emphasizing the impor-
tance of metabolic pathways in disease risk.

In our review of the literature, we discovered that cer-
tain metabolites, such as Inosine and Serine, are men-
tioned concerning postpartum depression, albeit not 
always as the primary focus of the study. For example, 
while Inosine is a metabolite in the purine metabolic 
pathway that is involved in various psychiatric disorders, 
its direct link to Postpartum depression is not well docu-
mented [29]. However, given the broader implications 
of purine metabolism in psychiatric conditions, Ino-
sine’s role could be interpreted as potentially relevant to 

Fig. 1 Scatter plots for the causal association between metabolites and postpartum depression
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postpartum depression, warranting further investigation 
[30–34]. The purine pathway, which is frequently altered 
in metabolic conditions such as hyperuricemia and can 
be influenced by pregnancy-related conditions such as 
preeclampsia, suggests a mechanism by which obstet-
ric complications may influence the risk of postpartum 
depression via metabolic disruptions [35, 36].

Similarly, while the Serine to alpha-ketobutyrate ratio 
is not directly linked to postpartum depression in the 
available literature, Serine metabolism is recognized for 
its involvement in several psychiatric disorders, suggest-
ing an avenue for further research into its specific role 
in postpartum depression [37–40]. Gestational diabetes, 
for example, can alter Serine and other amino acid levels, 
implying that metabolic diseases during pregnancy may 
predispose women to postpartum depression by disrupt-
ing key metabolic pathways involved in mood regulation 
[41, 42].

Conversely, our searches yielded no direct evidence 
linking metabolites such as 2-o-methylascorbic acid, 

N-formylmethionine, 2-hydroxyphenylacetate, the Ino-
sine to EDTA ratio, or the Carnitine to acetylcarnitine 
(C2) ratio with postpartum depression. This does not 
rule out their involvement, but it does highlight the 
need for more research into the potential links between 
these metabolites and postpartum depression. The lack 
of direct associations in the literature suggests that 
these metabolites’ roles in Postpartum depression are 
unknown, and additional research could greatly con-
tribute to our understanding of postpartum depression’s 
pathophysiology. This could include looking into how 
these metabolites interact with other metabolic path-
ways, as well as their potential role in the onset or pro-
gression of postpartum depression.

Our study stood out for its use of comprehensive blood 
metabolite GWAS data, which is uncommon in previ-
ous postpartum depression research. Furthermore, the 
MR approach we used yielded strong evidence for inves-
tigating the causal relationship between metabolites and 
postpartum depression. The use of this method not only 

Fig. 2 Leave-one-out plots for the causal association between metabolites and postpartum depression. The consistency of results remains robust even 
after excluding individual genetic variants in each analysis, indicating a high level of reliability and stability in our findings
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increased our understanding of the disease but also pro-
vided new avenues for future treatment methods.

However, our study does have limitations. Firstly, due 
to the small number and diversity of samples, our find-
ings may require validation in a larger population. 
Furthermore, while the MR approach can reduce con-
founding and reverse causation, it still requires strong 

genetic IVs. Therefore, future studies should include 
larger sample sizes and more genetic variants to improve 
the reliability and universality of our findings.

In conclusion, our findings provide new insights into 
the metabolic mechanisms underlying postpartum 
depression and may pave the way for future treatment 
strategies. Future research should validate the role of 

Fig. 3 Forest plots showed the causal associations between metabolites on postpartum depression. IVW: inverse variance weighting; CI: confidence 
interval; GCST90201001:Serine to alpha-ketobutyrate ratio; GCST90200930:Carnitine to acetylcarnitine (C2) ratio; GCST90200896:Inosine to EDTA ratio; 
GCST90200394:Inosine levels; GCST90200369:2-hydroxyphenylacetate levels; GCST90200343:N-formylmethionine levels; GCST90199908:2-o-methylas-
corbic acid levels; nsnp: the number of SNPs involved in each MR study
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these metabolites in the onset of postpartum depression 
and investigate their potential therapeutic applications. 
Furthermore, research must be expanded to include dif-
ferent populations and a broader range of metabolites to 
fully comprehend the biological basis of this complicated 
disease.

Conclusions
Our study, which used comprehensive blood metabolite 
GWAS data and mendelian randomization, found signifi-
cant associations between specific metabolites and the 
risk of postpartum depression. We discovered metabo-
lites associated with both increased and decreased risk, 
providing new insights into the disease’s metabolic basis.
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