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Blood metabolomic and postpartum 2
depression: a mendelian randomization study
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Abstract

Background Postpartum depression is a complex mental health condition that often occurs after childbirth and
is characterized by persistent sadness, anxiety, and fatigue. Recent research suggests a metabolic component to
the disorder. This study aims to investigate the causal relationship between blood metabolites and postpartum
depression using mendelian randomization (MR).

Methods This study used a bi-directional MR framework to investigate the causal relationship between 1,400
metabolic biomarkers and postpartum depression. We used two specific genome-wide association studies datasets:
one with single nucleotide polymorphisms data from mothers diagnosed with postpartum depression and another
with blood metabolite data, both of which focused on people of European ancestry. Genetic variants were chosen
as instrumental variables from both datasets using strict criteria to improve the robustness of the MR analysis.

The combination of these datasets enabled a thorough examination of genetic influences on metabolic profiles
associated with postpartum depression. Statistical analyses were conducted using techniques such as inverse
variance weighting, weighted median, and model-based estimation, which enabled rigorous causal inference from
the observed associations. postpartum depression was defined using endpoint definitions approved by the FinnGen
study’s clinical expert groups, which included leading experts in their respective medical fields.

Results The MR analysis identified seven metabolites that could be linked to postpartum depression. Out of these,
one metabolite was found to be protective, while six were associated with an increased risk of developing the
condition. The results were consistent across multiple MR methods, indicating a significant correlation.

Conclusions This study emphasizes the potential of metabolomics for understanding postpartum depression. The
discovery of specific metabolites associated with the condition sheds new insights on its pathophysiology and opens
up possibilities for future research into targeted treatment strategies.
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Introduction

Postpartum depression is a serious mental health condi-
tion that affects new mothers [1, 2]. It is characterized
by persistent feelings of sadness, anxiety, and fatigue,
making it difficult for the affected women to perform
daily care activities for themselves or their newborns [3].
Other symptoms may include altered sleeping and eat-
ing habits, extreme irritability, and feeling of worthless-
ness or guilt [4]. This condition has an impact not only
on the mother’s health but also on the baby’s bonding
and development [5]. Early detection and treatment are
critical to improve outcomes for both mother and child
[6, 7]. The cause of postpartum depression is not fully
understood, but recent research has begun to look into
the role of metabolic changes in its development. Spe-
cifically, changes in blood metabolites have been linked
to the onset and progression of postpartum depression,
implying a potential metabolic component to the disor-
der [8-12]. However, the causality of this relationship
remains uncertain.

Blood metabolomics, which involves a thorough exam-
ination of metabolites in biological systems, has emerged
as a valuable methodology for understanding the com-
plex interplay between genetic factors, environmental
influences, and disease processes [13—15]. This analyti-
cal approach, which examines metabolite configurations,
provides important insights into the metabolic anomalies
associated with postpartum depression. Nonetheless, the
field’s reliance on observational studies frequently pres-
ents difficulties due to confounding factors and issues of
reverse causation.

The use of mendelian randomization (MR) in this con-
text provides a distinct methodological advantage. MR
uses genetic variants as instrumental variables (IVs),
providing a novel way to decipher causal relationships
between various exposures and outcomes while avoid-
ing the inherent confounders and biases found in obser-
vational studies. Our study uses the MR paradigm to
investigate the potential causal relationship between
metabolomic profiles and postpartum depression. Con-
sequently, this study stands out as a pioneering effort in
this emerging research arena, with the potential to signif-
icantly enrich our understanding of postpartum depres-
sion and its broader implications.

Materials and methods

Study Methodology

In this study, we used a bi-directional two-sample MR
approach to investigate the hypothesized causal rela-
tionship between 1,091 blood-derived metabolites, 309
metabolite ratios, and postpartum depression [16]. The
MR paradigm uses genetic variants that are harnessed
as surrogate markers for potential risk factors. To derive
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credible causal inferences using I'Vs, three cardinal tenets
must be followed:

1. There is a direct relationship between genetic
variation and exposure.

2. There is no link between these genetic variants and
confounders that could influence the exposure-
outcome interaction.

3. Exclusiveness in the impact of genetic variation-
driven exposure on outcome.

Data sources for postpartum depression through genome-
wide association studies (GWAS)

Summary statistics pertinent to postpartum depression
were obtained from the GWAS database (https://gwas.
mrcieu.ac.uk/). For postpartum depression, the sample
consisted of 67,205 mothers with complete postpartum
follow-up records, including 7,604 cases and 59,601 con-
trols, totaling approximately 16,376,275 single nucleo-
tide polymorphisms (SNPs). The study’s population
was composed of people of European descent. Postpar-
tum depression was defined using endpoint definitions
approved by the FinnGen study’s clinical expert groups,
which included leading experts in their respective medi-
cal fields [17]. The FinnGen study established a strong
framework for defining medical conditions, ensuring
consistency and reliability in our diagnostic criteria [18,
19].

Sources of GWAS data for 1,091 blood metabolites and 309
metabolite ratios

The GWAS database, available at https://gwas.mrcieu.
ac.uk/, served as a repository for summary statistics
across a wide range of conditions. The GWAS summary
datasets for 1,400 metabolites were extracted from the
seminal study conducted by Chen et al [16], which rep-
resented the most extensive exploration to date of genetic
influences on human serum metabolism. The exhaustive
list of these 1,400 metabolites is provided in Supplemen-
tary Table S1. The demographic focus of this study was
on people with European ancestry.

IVs Selection

Consistent with the current scientific literature, we set
a significance threshold of IVs related to each trait at
1x107° [20, 21]. This process was made easier by using
the R package “TwoSampleMR” [22], which helped refine
the selection of SNPs.

a) Clumping for Linkage Disequilibrium.

To address linkage disequilibrium (LD) between
SNPs, we set a threshold of r*2 at 0.001 and specified a
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clumping proximity of 10,000 kb. LD measures the non-
random association of alleles at different loci in a popula-
tion, with an r"2 value of 1 indicating complete LD and a
value of 0 indicating no LD.

b) Assessment of Instrument Strength.

To mitigate bias stemming from weak instruments, we
calculated the R2 and F statistics for each SNP. The R?
statistic quantifies the proportion of exposure variance
explained by the IV, providing insight into the strength of
the instrument. Conversely, the F statistic evaluates the
overall instrument strength, incorporating both the R?
value and the sample size of the exposure group. SNPs
with an F-statistic below 10 were excluded from subse-
quent analyses to minimize the risk of weak instrument
bias, which can lead to inflated type I error rates and
unreliable estimates.To calculate R2 and [ statistics, fol-
low the steps below:

R? =
ctSunposare (1=t furposure)

2% posuree feaposure(1=€a fewposure ) +25€Zposuresamplesizeeposureeaferposure(1=€a ferposure)

2 .
R (5ampleszzemy)usu'r‘fi - 2)

1— R?

F =

In these formulae:

Bexposure represents the beta coefficient of exposure,

¢ €afgposure 1S the effect of allele frequency of exposure.
¢ S€yposure epresents the standard error of exposure.

o samplesize,,,,,,, indicates the sample size of the
exposure group.

We excluded SNPs with an F-statistic of less than 10 from
our analysis to avoid weak instrument bias, which can
inflate type I error rates and produce unreliable estimates
[23, 24].

Statistical approach

Analyses were conducted using the R programming envi-
ronment (version 4.3.1). The investigation into the causal
relationship between 1,400 metabolites and postpartum
depression was executed using methodologies such as
inverse variance weighting (IVW) [25], weighted median
[26], and mode-based techniques [27], primarily through
the TwoSampleMR package. Cochran’s Q statistic was
used to investigate heterogeneity among the IVs. In cases
of significant heterogeneity, the random-effects IVW
model replaced the fixed-effects model. The MR-Egger
method was used to address potential horizontal pleiot-
ropy, with the intercept serving as an indicator of its exis-
tence [28]. Furthermore, the MR-PRESSO approach was
used to refine the analysis by identifying and eliminating
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outliers that could be attributed to pleiotropy. Funnel
plots were used to ensure the consistency and reliability
of the findings. To summarize, the screening of blood
metabolites for potential causal impact on postpartum
depression was stringently conducted based on multiple
criteria: (1) a significant p-value in the primary analy-
sis IVW derived p<0.05 and FDR<0.5), (2) consistent
direction and magnitude across the five MR methods,
and (3) absence of heterogeneity or horizontal pleiotropy
in the MR results.

Results
Probing the Impact of Metabolites on Postpartum
Depression.

Based on the predefined criteria for selecting IVs, a
comprehensive set of 19,541 SNPs were used as IVs in
this study. Detailed information about these chosen SNPs
and their characteristics are contained in Supplemental
Table S2.

An MR study identified seven metabolites. One of
these metabolites showed protective effects against post-
partum depression, while seven metabolites were found
to have potential pathogenic roles (Figs. 1 and 2). The full
results and detailed data of the MR analysis are contained
in Supplemental Table S3.

The IVW analysis for these metabolites yielded an
aggregated score of:

2-o-methylascorbic
»=0.003188963),

N-formylmethionine levels (OR 1.17, p=0.003186648),

2-hydroxyphenylacetate levels (OR 1.12,
p=0.003777128),

Inosine levels (OR 1.14, p=0.002786266),

Inosine to EDTA ratio (OR 1.14, p=0.001912067),

Carnitine to acetylcarnitine (C2) ratio (OR 1.26,
p=0.001447855).

Serine to alpha-ketobutyrate
p=6.20E-05).

The Cochran’s IVW Q test, as detailed in Supplemental
Table S4, revealed no significant heterogeneity in the IVs
(p>0.05). Furthermore, the MR-Egger regression inter-
cept analysis, as shown in Supplemental Table S5, found
no significant directional horizontal pleiotropy (p>0.05).
Furthermore, the MR-PRESSO global test (results in
Supplemental Table S6) found no significant outliers,
indicating a negligible presence of horizontal pleiotropy
in the relationship between metabolites and postpartum
depression (p>0.05).

Notably, the IVW analysis produced significant esti-
mates (p<0.05), and the direction and magnitude of the
estimates were consistent across four other analytical
methods. (Fig. 3).

acid levels (OR 1.10,

(OR 0.78,

ratio
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Fig. 1 Scatter plots for the causal association between metabolites and postpartum depression

Discussion

In this study, we used a comprehensive approach that
included GWAS data to investigate the causal relation-
ships of 1,091 blood metabolites and 309 metabolite
ratios with postpartum depression using a strong MR
framework. Our study identified specific metabolites that
were linked to an increased risk of postpartum depres-
sion. Notably, the ratio of Serine to alpha-ketobutyrate
was found to be inversely correlated with the risk of
postpartum depression. Conversely, a genetic predispo-
sition to higher levels of 2-o-methylascorbic acid, N-for-
mylmethionine, 2-hydroxyphenylacetate, and Inosine, as
well as the ratios of Inosine to EDTA and Carnitine to
acetylcarnitine (C2), has been linked to an increased risk

of postpartum depression. These novel findings contrib-
ute significantly to a better understanding of postpartum
depression’s pathophysiology, emphasizing the impor-
tance of metabolic pathways in disease risk.

In our review of the literature, we discovered that cer-
tain metabolites, such as Inosine and Serine, are men-
tioned concerning postpartum depression, albeit not
always as the primary focus of the study. For example,
while Inosine is a metabolite in the purine metabolic
pathway that is involved in various psychiatric disorders,
its direct link to Postpartum depression is not well docu-
mented [29]. However, given the broader implications
of purine metabolism in psychiatric conditions, Ino-
sine’s role could be interpreted as potentially relevant to
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Fig. 2 Leave-one-out plots for the causal association between metabolites a
after excluding individual genetic variants in each analysis, indicating a high |

postpartum depression, warranting further investigation
[30—34]. The purine pathway, which is frequently altered
in metabolic conditions such as hyperuricemia and can
be influenced by pregnancy-related conditions such as
preeclampsia, suggests a mechanism by which obstet-
ric complications may influence the risk of postpartum
depression via metabolic disruptions [35, 36].

Similarly, while the Serine to alpha-ketobutyrate ratio
is not directly linked to postpartum depression in the
available literature, Serine metabolism is recognized for
its involvement in several psychiatric disorders, suggest-
ing an avenue for further research into its specific role
in postpartum depression [37-40]. Gestational diabetes,
for example, can alter Serine and other amino acid levels,
implying that metabolic diseases during pregnancy may
predispose women to postpartum depression by disrupt-
ing key metabolic pathways involved in mood regulation
(41, 42].

Conversely, our searches yielded no direct evidence
linking metabolites such as 2-o-methylascorbic acid,

nd postpartum depression. The consistency of results remains robust even
evel of reliability and stability in our findings

N-formylmethionine, 2-hydroxyphenylacetate, the Ino-
sine to EDTA ratio, or the Carnitine to acetylcarnitine
(C2) ratio with postpartum depression. This does not
rule out their involvement, but it does highlight the
need for more research into the potential links between
these metabolites and postpartum depression. The lack
of direct associations in the literature suggests that
these metabolites’ roles in Postpartum depression are
unknown, and additional research could greatly con-
tribute to our understanding of postpartum depression’s
pathophysiology. This could include looking into how
these metabolites interact with other metabolic path-
ways, as well as their potential role in the onset or pro-
gression of postpartum depression.

Our study stood out for its use of comprehensive blood
metabolite GWAS data, which is uncommon in previ-
ous postpartum depression research. Furthermore, the
MR approach we used yielded strong evidence for inves-
tigating the causal relationship between metabolites and
postpartum depression. The use of this method not only
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id.exposure nsnp method pval OR(95% CI)
GCST90199908 28 MR Egger 0.565 Ho— 1.032 (0.928 to 1.148)
28 Weighted median 0.225 hﬂ 1.048 (0.971 t0 1.132)
28 Inverse variance weighted 0.003 . 1.097 (1.032 to 1.167)
28 Simple mode 0.011 : —— 1.361 (1.092 to 1.697)
28 Weighted mode 0.275 l- 2 1.046 (0.967 to 1.131)
GCST90200343 21 MR Egger 0.143 I—E—iit‘-—i 1.214 (0.947 to 1.557)
21 Weighted median 0.025 l—o—u 1.193 (1.023 to 1.392)
21 Inverse variance weighted 0.003 o 1.171 (1.054 to 1.301)
21 Simple mode 0.033 —e—  1.373(1.047 10 1.801)
21 Weighted mode 0.049 —o—i 1.238 (1.014 to 1.511)
GCST20200369 26 MR Egger 0.128 —o—i 1.150 (0.966 to 1.368)
26 Weighted median 0.062 !—0—1 1.118 (0.994 to 1.257)
26 Inverse variance weighted 0.004 r-o-| 1.124 (1.038 to 1.216)
26 Simple mode 0.484 1—&—1 1.079 (0.874 to 1.333)
26 Weighted mode 0.225 Pt 1.111 (0.941 to 1.312)
GCST90200394 22 MR Egger 0.391 I—IP——-I 1.087 (0.902 to 1.308)
22 Weighted median 0.034 !—0—* 1.135 (1.010 to 1.275)
22 Inverse variance weighted 0.003 l—o-i 1.139 (1.046 to 1.240)
22 Simple mode 0.234 r——o—i 1.128 (0.930 to 1.367)
22 Weighted mode 0.207 F—t— 1.128 (0.941 to 1.351)
GCST90200896 24 MR Egger 0177 H——i 1.138 (0.949 to 1.364)
24 Weighted median 0.168 P,-.—i 1.087 (0.966 to 1.223)
24 Inverse variance weighted 0.002 I-O-i 1.140 (1.049 to 1.238)
24 Simple mode 0.416 l—O—i 1.091 (0.888 to 1.339)
24 Weighted mode 0.427 F— 1.077 (0.900 to 1.287)
GCST90200930 16 MR Egger 0.405 e 1.177 (0.811 to 1.709)
16 Weighted median 0.008 C—e— 1.301 (1.070 to 1.581)
16 Inverse variance weighted 0.001 —e— 1.264 (1.094 to 1.459)
16 Simple mode 0.045 —e—> 1.410 (1.036 t0 1.919)
16 Weighted mode 0.036 'l— — 1.376 (1.050 to 1.804)
GCST20201001 14 MR Egger 0006 <o— | 0.607 (0.452 to 0.816)
14 Weighted median 0.002 e : 0.772 (0.655 to 0.909)
14 Inverse variance weighted <0.001 e : 0.780 (0.691 to 0.881)
14 Simple mode 0.277 —0— 0.845 (0.631 to 1.131)
14 Weighted mode 0.335 —e——i 0.867 (0.655 t0 1.147)
1' 2

Fig. 3 Forest plots showed the causal associations between metabolites on postpartum depression. IVW: inverse variance weighting; Cl: confidence
interval; GCST90201001:Serine to alpha-ketobutyrate ratio; GCST90200930:Carnitine to acetylcarnitine (C2) ratio; GCST90200896:Inosine to EDTA ratio;
GCST90200394:Inosine levels; GCST90200369:2-hydroxyphenylacetate levels; GCST90200343:N-formylmethionine levels; GCST90199908:2-0-methylas-

corbic acid levels; nsnp: the number of SNPs involved in each MR study

increased our understanding of the disease but also pro-
vided new avenues for future treatment methods.
However, our study does have limitations. Firstly, due
to the small number and diversity of samples, our find-
ings may require validation in a larger population.
Furthermore, while the MR approach can reduce con-
founding and reverse causation, it still requires strong

genetic IVs. Therefore, future studies should include
larger sample sizes and more genetic variants to improve
the reliability and universality of our findings.

In conclusion, our findings provide new insights into
the metabolic mechanisms underlying postpartum
depression and may pave the way for future treatment
strategies. Future research should validate the role of
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these metabolites in the onset of postpartum depression
and investigate their potential therapeutic applications.
Furthermore, research must be expanded to include dif-
ferent populations and a broader range of metabolites to
fully comprehend the biological basis of this complicated
disease.

Conclusions

Our study, which used comprehensive blood metabolite
GWAS data and mendelian randomization, found signifi-
cant associations between specific metabolites and the
risk of postpartum depression. We discovered metabo-
lites associated with both increased and decreased risk,
providing new insights into the disease’s metabolic basis.
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