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Abstract
Background  Human breast milk (HBM) is a contributing factor in modulating the infant’s gut microbiota, as it 
contains bacteria that are directly transferred to the infant during breastfeeding. It has been shown that children of 
women diagnosed with gestational diabetes mellitus (GDM) have a different gut microbiota compared to children 
of women without GDM. Our hypothesis is therefore that women with GDM have a different HBM microbiota, which 
may influence the metabolic function and capacity of the child later in life. The aim of this study was to investigate 
whether women with GDM have a different breast milk microbiota 1–3 weeks postpartum compared to women 
without GDM.

Methods  In this case-control study, a total of 45 women were included: 18 women with GDM and 27 women 
without GDM. A milk sample was collected from each participant 1 to 3 weeks postpartum and the bacterial 
composition was examined by 16 S rRNA gene sequencing targeting the V4 region.

Results  High relative abundances of Streptococcus and Staphylococcus were present in samples from both women 
with and without GDM. No difference could be seen in either alpha diversity, beta diversity, or specific taxa between 
groups.

Conclusion  Our results did not support the existence of a GDM-associated breast milk microbiota at 1–3 weeks 
postpartum. Further research is needed to fully understand the development of the gut microbiota of infants born to 
mothers with GDM.
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Introduction
Gestational diabetes mellitus (GDM) is defined as 
impaired glucose tolerance detected during pregnancy. 
Worldwide, the prevalence of GDM is increasing and 
affecting up to 14% of pregnant women [1]. Known risk 
factors for developing GDM include a family history of 
type 2 diabetes mellitus, previous delivery of a macro-
somic infant (> 4500  g), pre-pregnancy BMI > 27  kg/m², 
glucosuria, and polycystic ovarian syndrome [2]. GDM 
affects both mother and child with complications such 
as preeclampsia, neonatal hypoglycemia, and congenital 
malformations [3–5]. Additionally, GDM predisposes 
both mother and child to diabetes, obesity, and cardio-
vascular disease [6–11]. The increased risk of diabetes, 
obesity, and cardiovascular disease in children born to 
mothers with GDM is not fully understood, and emerg-
ing research suggests an involvement of the microbiota.

The human gut microbiota is complex and comprises 
numerous microorganisms each playing a crucial role in 
maintaining normal physiological functions [12]; some 
of these may cause increased weight gain, while others 
can induce insulin resistance [13–15]. Disruption of the 
microbiota, known as dysbiosis, has been observed in 
individuals with obesity, pre-eclampsia, type 2 diabetes, 
and GDM [13, 16–19]. The role of the microbiota in dis-
ease development is further supported by fecal micro-
biota transplantation (FMT) studies in animals, where 
a dysbiotic obesity-associated microbiota can induce 
increased body fat and insulin resistance in the recipient 
[15, 20]. Furthermore, studies have shown an association 
between infant gut dysbiosis and the development of type 
1 diabetes, obesity, and asthma [21, 22], which empha-
sizes the potential early-life influence of the gut micro-
biota on disease development later in life. Children born 
to women with GDM have a distinct gut microbiota at 
birth, 2 weeks, and 5 years postpartum [23–25]. This sug-
gests maternal transmission of a GDM-associated micro-
biota, which may have a modulating effect on the child’s 
gut colonization and disease development later in life 
compared to children born to mothers without GDM.

The process of gut colonization begins early in life and 
is initially dominated by Bifidobacterium before transi-
tioning into a more diverse and stable gut microbiota by 
the age of three years [26]. The early presence of Bifido-
bacterium is important for normal gut microbiota estab-
lishment, as it has beneficial effects on the host such as 
immune system modulation and defense against patho-
gens [27]. The colonization of bacteria early in life [28] is 
influenced by gestational age at birth, mode of delivery, 
maternal health, and feeding with breast milk or formula 
[26, 29]. During the first months of life, breast milk is 
crucial in modulating the infant’s gut microbiota [30–32]. 
Bacterial genera from breast milk have been identified in 
infant stools, indicating a horizontal maternal transfer of 

bacteria [32]. Through this process, the mother seemingly 
provides the infant with microbial agents that colonize 
the gastrointestinal tract and contribute to the establish-
ment of the infant gut microbiota [32]. The breast milk 
microbiota is mainly dominated by Staphylococcus and 
Streptococcus, but also contains Serratia, Pseudomonas, 
Corynebacterium, Ralstonia, Propionibacterium, Fine-
goldia, Sphingomonas, and Bifidobacterium [33–37]. In 
addition to the bacteria themselves, breastmilk is also 
known to contain prebiotic components such as human 
milk oligosaccharides (HMOs), which may also contrib-
ute to modulation of the infant’s gut microbiota [38]. 
Maternal factors such as pre-pregnancy BMI [36], weight 
gain during pregnancy [36], lactation state [34], con-
sumption of antibiotics [39, 40], maternal secretor status 
[41], and mode of delivery [42] may influence breast milk 
composition. In addition, disease during pregnancy may 
also be an important factor. For instance, a few previ-
ous studies have compared breast milk microbiota from 
women who had GDM with that of former healthy preg-
nant women, although with conflicting results, as one 
study identified specific bacterial differences [39] while 
the other found no distinctions [43]. Notably, these stud-
ies assessed different time points; one observed varia-
tions in colostrum samples [39], while another found no 
differences in breast milk at 3 months postpartum [43]. 
Consequently, further investigation is needed to clarify 
whether and when differences exist in breast milk micro-
biota between women with and without GDM.

The aim of this study was to investigate whether women 
with GDM have a different breast milk microbiota 1–3 
weeks postpartum compared to women without GDM.

Methods
Study participants
Participants were recruited from the maternity wards of 
the North Denmark Regional Hospital, Denmark, and 
Aalborg University Hospital, Denmark, shortly after 
delivery (1–3 days). Inclusion criteria were women whose 
gestational age at delivery was 37 + 0 to 41 + 6 weeks, who 
delivered a healthy child. Women were excluded if they 
had type 1 or type 2 diabetes, if they were treated with 
antidepressants, or if they had pre-eclampsia. In total, 18 
women with GDM and 27 women without GDM were 
included.

Anthropometric and clinical data
The women filled out a questionnaire regarding their use 
of antibiotics within the last three months, height, pre-
pregnancy weight, GDM diagnosis, insulin treatment, 
delivery mode, and time of sample collection. The diag-
nostic criterion for GDM was based on a 2-hour 75  g 
oral glucose tolerance test with a 2-hour glucose ≥ 9.0 
mmol/L.
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Sample collection
Breast milk samples were collected by the mothers 1–3 
weeks after birth. The women collected 10–20 ml of milk 
from one of the breasts. Before sample collection, the 
breast was cleaned with disinfection wipes. The women 
were asked not to nurse from the chosen breast three 
hours prior to sample collection. The breast milk sample 
was collected manually by massaging the breast. The 
women were instructed to wear sterile gloves and to dis-
card the first few drops of milk to reduce contamination 
from the mother’s skin. The breast milk sample was col-
lected into a sterile tube and immediately stored at -20˚C 
at the homes of the participants for up to 3 days and were 
subsequently transported on ice to the research labora-
tory at the North Denmark Regional Hospital, Denmark, 
where they were transferred to a -80  °C freezer and 
stored until further processing.

DNA extraction and 16 S rRNA gene sequencing
Total DNA was extracted from 1.5 mL breast milk. Ini-
tially, samples were centrifuged at 13,000 x g at 4  °C for 
20  min. The fat layer and supernatant were removed 
without disturbing the pellet. DNA from the pellet was 
isolated using the QIAamp PowerFecal Pro DNA kit 
(Qiagen) automated on a QIAcube® (Qiagen) according 
to the manufacturer’s protocol. The total concentration 
of DNA was measured using the Qubit dsDNA HS Assay 
kit (Thermo Fisher Scientific). Duplicate DNA extrac-
tions were performed for all participants.

DNA was subjected to 16  S rRNA gene sequenc-
ing by DNAsense (Denmark), using a modified version 
of an Illumina protocol [44], as previously described 
[45]. Briefly, the extracted DNA was used as a tem-
plate for PCR amplification of the V4 region of the 16 S 
rRNA gene, using the following standard primers (515 F 
(Parada) GTGYCAGCMGCCGCGGTAA and 806R 
(Apprill) GGACTACNVGGGTWTCTAAT) [46] and 
30 amplification cycles. The resulting amplicon librar-
ies were subsequently amplified in a second PCR using 
8 cycles, and sequenced using a MiSeq (Illumina, USA), 
with the MiSeq Reagent Kit v3 (Illumina). A 10% PhiX 
contol library (Illumina) was spiked in to overcome low 
complexity issues.

Bioinformatics
After sequencing, the USEARCH v11 Amplicon Analysis 
pipeline [47]was applied to remove PhiX sequences and 
to demultiplex the samples. The resulting sequences were 
imported into the QIIME2 v 2022.2 platform. Forward 
reads were filtered for primers, truncated to 264 base 
pairs, and denoised using Deblur with standard param-
eters. The resulting ASVs were aligned with MAFFT 
through q2-alignment which was used for the construc-
tion of a phylogenetic tree using FastTree 2. The Naïve 

Bayesian classifier, which is implemented in the q2-fea-
ture-classifier, was trained against the SILVA 138 SSU 
reference database and used to assign taxonomy to each 
ASV. Feature tables were then exported to R v 4.3.2 for 
downstream analyses [48]. As mentioned, DNA extrac-
tion was performed twice for each sample, which resulted 
in two 16 S rRNA sequencing results (replicate 1 and 2) 
from each participant. Both replicates were used for all 
analyses.

Potential contaminating bacteria were identified and 
removed using the Decontam package v 1.22.0. We 
used the combined method (threshold of P = 0.1) that 
both utilizes the frequency of ASVs in negative controls 
compared to samples, as well as checks for correlation 
between initial DNA quantity compared to the relative 
abundance of ASVs in samples. Alpha- and beta-diver-
sity were investigated using the packages phyloseq v 
1.46.0 (https://github.com/joey711/phyloseq) and Amp-
vis2 v 2.8.6. Alpha diversity metrics included ASV rich-
ness, Shannon diversity index, and Faith’s phylogenetic 
diversity. Differences in alpha diversity metrics between 
groups, were analyzed using linear mixed-effect models, 
with participant ID as random effect, to adjust for the 
variability introduced by sample replicates. Variations 
in beta diversity were determined using weighted Uni-
Frac, unweighted UniFrac, and Bray Curtis dissimilarity. 
Differences in beta diversity were analyzed using PER-
MANOVA as implemented in the Vegan package, with 
999 permutations and participant ID added as strata, 
to adjust for the effects of replicates, while dispersion 
was tested using Betadisper. The resulting variations in 
beta-diversity were visualized using principal coordinate 
analysis (PCoA) with ellipses depicting 95% confidence 
intervals. The weighted UniFrac distance between sam-
ples was subsequently used for Agglomerative Hierarchi-
cal Clustering, using Ward’s minimum variance method, 
as implemented in the hclust command in R [49]. The 
number of clusters was subsequently selected based on 
the Silhouette clustering metric, based on potential clus-
ters between 2 and 6. Finally, a dendrogram was used to 
visualize the clustering, using the Dendextend package 
v. 1.17.1 in R [50]. The relative abundance of bacteria in 
the samples corresponding to the individual clusters, was 
visualized using stacked barplots with phylum and gen-
era, using the Microshades package v. 1.11 in R [51]. The 
analysis of compositions of microbiomes with bias cor-
rection (ANCOM-BC) was used to investigate differen-
tially abundant taxa between women with and without 
GDM, at genus level, using the ancombc2 command in 
the ANCOMBC package v. 2.4.0, with pseudo_sens set 
to true. Patient ID was used as random effects, to adjust 
for the variability introduced by replicates. Taxa were 
removed from the ANCOM-BC2 analysis if they were 
present in less than 10% of sample. Only genera that were 

https://github.com/joey711/phyloseq
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consistently associated with either GDM or non-GDM, 
even after pseudo-count addition (passed sensitivity 
analysis), were considered truly significant. P-values were 
adjusted for multiple comparisons using the Benjamini-
Hochberg approach, where an adjusted p-value < 0.05 
was considered significant for all analyses.

Statistics
All statistical analyses were performed in R v 4.3.2 [48]. 
Mean and median values are stated as mean ± SD and 
median (Q1-Q3), respectively. For continuous, clinical 
data, (BMI and sample collection time) distribution and 
variance were determined using Shapiro-Wilks test and 
Bartlett’s test, respectively. Depending on the results, dif-
ferences between clinical groups for continuous clinical 
data were analyzed using Student’s t-test on normally 
distributed data with equal variance, while non-normal 
distributed data were analyzed using the Wilcoxon rank-
sum test. Fisher’s exact test was used to analyze differ-
ences in categorical data. The p-values were adjusted for 
multiple hypothesis testing, using the Benjamini-Hoch-
berg approach. A multiple-testing adjusted p-value < 0.05 
was considered significant.

Results
Characteristics of study participants
In total, 45 participants were included in this study 
(Table  1). These were 18 women with GDM and 27 
women without GDM. No statistical difference could 
be observed in sample collection time (days after deliv-
ery) (p = 0.80), pre-pregnancy BMI (p = 0.40), and anti-
biotic treatment in the pregnancy and during delivery 

(p = 0.07) between the groups. However, a significant 
difference could be seen in mode of delivery (p = 0.002), 
insulin treatment (p = 0.008) and previous GDM diagno-
sis (p = 0.02).

Quality control and sequencing data
A total of 87 breast milk samples and 10 negative controls 
gave rise to 1,498,087 reads, with an average of 15,444.2 
reads per sample (See Supplementary material 1). Taxo-
nomic assignment led to identification of 566 unique 
ASVs. Removal of contaminants using the Decontam 
package, led to removal of five ASV (see Supplementary 
material 2). Duplicates were avaible for all but three study 
participants (MM_405, MM_511, and MM_64), and were 
observed to be highly similar (see Supplementary mate-
rial 1). After Decontam analyses and removal of nega-
tive controls, we ended up with 87 samples, containing 
a total of 540 ASVs with taxonomy assigned for 99.81%, 
99.26%, and 95.00% at phylum, family, and genus levels, 
respectively.

No difference in neither alpha diversity nor beta diversity 
in breast milk samples from women with and without GDM
To investigate bacterial alpha-diversity we calculated 
ASV richness, Faith’s phylogenetic diversity, and Shan-
non diversity index (Fig.  1). No significant difference 
could be observed between women with and without 
GDM in either of the alpha diversity measures.

To assess potential differences in bacterial communities 
between study groups, we investigated the beta diversity 
of the breast milk microbiota using PCoA, and tested 
variance by PERMANOVA. No difference could be seen 
between women with and without GDM in beta diversity 
for Weighted UniFrac, Unweighted UniFrac, and Bray 
Curtis dissimilarity (Fig. 2).

Potential confounders were added as fixed effects to a 
subsequent PERMANOVA model, including BMI group, 
insulin treatment, antibiotic treatment, mode of delivery 
and if the women had a previous GDM diagnosis. None 
of the factors had a significant effect on the microbiota 
composition, though previous GDM diagnosis and BMI 
were shown to have the largest effect on the data set 
(Fig. 3).

Breast milk microbiota in women with and without GDM is 
dominated by Staphylococcus and Streptococcus
Breast milk samples both from women with and without 
GDM were dominated by the phylum Firmicutes with a 
small contribution from phylum Actinobacteria and phy-
lum Proteobacteria (Fig. 4). For genera, we observed that 
all samples were dominated by Staphylococcus and Strep-
tococcus (Fig. 4).

Hierachial clustering was subsequently performed 
based on weighted UniFrac, which demonstrated the 

Table 1  Characteristics of study participants. A total of 45 
women were included in the study. However, some data were 
not available for all women. This included mode of delivery 
(n = 40), antibiotic treatment (n = 38), and insulin treatment 
(n = 44)
Characteristic GDM, n = 181 Non-GDM, 

n = 271
p-val-
ue2

Days after delivery 10.5 (9.3, 13.8) 11.0 (7.5, 15.5) 0.80
Pre-pregnancy BMI 27.0 (22.5, 31.9) 24.2 (21.6, 30.3) 0.4
Pre-pregnancy BMI 
group

> 0.90

< 25 8/18 (44,4%) 14/27 (51,9%)
25–30 3/18 (16,7%) 5/27 (18,5%)
> 30 7/18 (38,9%) 8/27 (29,6%)
Mode of delivery 0.002*
C-section 6/16 (37,5%) 0/24 (0%)
Vaginal birth 10/16 (62,5%) 24/24 (100%)
Antibiotic treatment 4/15 (26,7%) 1/23 (4.3%) 0.07
Insulin treatment 5/18 (27,8%) 0/26 (0%) 0.008*
Previous GDM 4/18 (22,2%) 0/27 (0%) 0.02*
1 Median (IQR); n (%) 2 Wilcoxon rank sum test for continuous data; Fisher’s exact 
test for categorical data
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presence of two major clusters (II and III) that were 
evenly represented by both women with and without 
GDM (Fig.  4). Cluster II had a higher Streptococcus to 
Staphylococcus ratio compared to cluster III. A single 
sample (cluster I) was markedly different from the other 
samples with a higher diversity and almost complete lack 
of Streptococcus.

ANCOM-BC was used to evaluate differential abun-
dance of bacterial genera between women with and with-
out GDM. No significant differences were observed when 
adjusting for multiple comparisons (Supplementary 
material 3).

Discussion
Our study investigated whether women with GDM have 
a different breast milk microbiota 1–3 weeks postpartum 
compared to women without GDM. We did not observe 
significant differences in the composition of breast milk 
microbiota between the two groups, concerning either 
alpha diversity, beta diversity or specific taxa. However, 

our study found that the dominant phylum in breast 
milk samples from both women with and without GDM 
was Firmicutes. This observation is in line with earlier 
studies, indicating that Firmicutes is a consistent and 
predominant phylum in breast milk microbiota across 
varying populations [33–37]. Furthermore, our analy-
sis at genus level revealed a composition resembling the 
core breast milk microbiota reported in previous studies. 
Notably, genera in our samples included Staphylococcus, 
Streptococcus, Corynebacterium, Finegoldia, and Bifido-
bacterium. These findings were in line with our expecta-
tions based on the existing literature [33–37].

We expected that women with GDM would have a dif-
ferent breast milk microbiota as previous studies have 
reported a dysbiosis in the gut, vagina, colostrum, and 
mouth of women with GDM, as well as different gut 
microbiota in infants of GDM-affected mothers [52–54]. 
However, our findings did not support this. Furthermore, 
our study contrasted with the study by Gámez-Valdez 
et al. [39] who reported a higher relative abundance of 

Fig. 2  Beta-diversity variations in breast milk microbiota for women with or without GDM. The beta-diversity is presented using principal coordinate 
analysis (PCoA), with either A) weighted UniFrac, B) unweighted UniFrac, or C) Bray-Curtis dissimilarity. Ellipses depict 95% confidence intervals. PER-
MANOVA results are indicated with adjusted p-values and R2 and represent the overall differences in beta-diversity, while differences in dispersion were 
tested using betadisper and indicated using p-values

 

Fig. 1  Differences in alpha-diversity of breast milk samples from women with or without GDM. Alpha-diversities were analyzed using a) ASV richness, B) 
Faith’s phylogenic Diversity, and C) Shannon diversity index
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Staphylococcus and Prevotella in breast milk samples 
from women with GDM compared to women without 
GDM [39]. The differences in our results and those of 
Gámez-Valdez et al. [39] may be attributed to the dif-
ferences in sample collection procedures, the isolation 
methods, and the analysis pipelines. We used Deblur for 
sequence processing, which removes sequences, while 
Gámez-Valdez et al. [39] used DADA2, which attempts 
to correct sequences [39]. Moreover, Gámez-Valdez et 
al. employed LEfSE for group comparisons, whereas we 
used ANCOM-BC2. ANCOM-BC2 accounts for zero 
inflation, rendering the analysis more stringent. Thus, 
methodological differences may partly explain the differ-
ent findings [34]. Another difference between our study 
and the study by Gámez-Valdez et al. [39] was the sample 
collection time. Our study analyzed transition/mature 
milk, while Gámez-Valdez et al. [39] analyzed colostrum. 
Previous research has suggested that the composition 
of milk microbiota changes over time [34, 37], and this 
temporal variation could explain the differences observed 
in colostrum, which may not necessarily be present in 
mature milk. To our knowledge, no studies have explored 

whether breast milk microbiota composition changes 
over time from a more GDM-associated composition to 
one resembling that of healthy controls. Another study 
has investigated breast milk microbiota in women with 
and without GDM three months postpartum and found 
no significant differences [43]. This suggests that a GDM-
associated breast milk microbiota might only be present 
in the early stages of lactation, and based on our results 
is already gone 1–3 weeks postpartum. This was further 
supported by a study reporting higher glucose levels in 
colostrum samples compared to samples from mature 
milk [38]. It would therefore be interesting to follow a 
larger number of women with and without GDM to see if 
the microbiome is different in the beginning but not later 
in the lactation period.

The reason we did not see a difference in the breast 
milk microbiota between women with and without GDM 
could also be due to the nature of the samples. Breast 
milk has a low microbial biomass [37], that is highly 
dominated by Streptococcus and Staphylococcus, which 
could overshadow any minor variations in the breast milk 
composition. Importantly, these bacteria are believed to 

Fig. 3  Explained variance of 5 covariates. The bar plots show the amount of variance (r2) explained by each covariate. A) illustrates the variance of each 
covariate when using weighted UniFrac, b) illustrates the variance of each covariate when using unweighted UniFrac, c) illustrates the variance of each 
covariate when using Bray Curtis dissimilarity, d-f ) show PCoA plots for the covariate that explains most in the data set for weighted UniFrac, unweighted 
UniFrac and Bray Curtis dissimilarity respectively
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originate from the maternal skin and infant oral cavity, 
opposed to the breast milk itself, suggesting that breast 
milk does not contain bacteria but is merely contami-
nated from external areas [55]. Other studies have, how-
ever, found bacteria (genus level) in breast milk samples 
that were not simultaneously found on the mother’s skin 
or the child’s mouth, pointing towards the existence of a 
breast milk microbiota [56].

Even though we do not find a GDM-associated breast 
milk microbiota, it is still possible that the mother indi-
rectly transfers a GDM-associated bacterial profile to the 
child. For instance, different compositions of HMO´s in 
breastmilk from women with GDM vs. women without 
GDM may also explain differences in infant gut micro-
biota colonization. Several studies have shown that the 
HMO profile in women with GDM is different from 
women without GDM [38, 57, 58]. One study showed a 
lower number of HMOs in women with GDM collected 
six days after birth and observed a delayed colonization of 
Bifidobacterium and lactobacillus in the infant gut [38]. 
This suggested that the low level of HMOs in breast milk 
samples from mothers with GDM during early lactation, 

could be involved in the disruption of normal gut colo-
nization in the infant. Other routes of transmission may 
also occur, e.g. by the maternal gut and vaginal environ-
ments [54, 59]. Differences in infant gut microbiota could 
therefore be explained by microbial transfers from these 
maternal environments rather than from breast milk. 
This was supported by a study demonstrating similarities 
in gut microbiota composition between the mothers with 
GDM and their infants [23, 54].

Our study has some limitations. The clinical data were 
collected through self-reporting questionnaires and some 
data points are missing. Additionally, our sample size 
was relatively small. Furthermore, while all the women 
included in the study initially planned to breastfeed 
directly, we lack the information on whether some of 
them transitioned from direct breastfeeding to indirect 
breastfeeding before the sample collection. Finally, in our 
analysis, we only examined data at the genus level and not 
at the species level, and differences at lower taxonomic 
levels or at functional levels may therefore have been 
missed [16]. Our study does also have several strengths. 
Since the breast milk microbiota may change during 

Fig. 4  Unsupervised clustering and bacterial composition of samples at the individual clusters. Hierarchical clustering (top) was performed using Ward’s 
minimum variance method, on weighted UniFrac distance between the individual breastmilk samples. The Roman numerals represent the three clusters. 
The number of clusters chosen was based on the Silhouette metric. The stacked bar plots represent the relative abundance of breast milk microbiota for 
each sample in each cluster, using the taxonomic classifications phyla and genera. The ID of each participant is colored based on GDM status
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the lactation period, it is a strength of our study that 
all breast milk samples were collected within a limited 
time period. Furthermore, the women were instructed 
to collect the samples by manually expressing milk from 
a breast that had not been nursed from for a period of 
three hours, and the first volume of milk was discarded to 
reduce skin contamination.

In conclusion, our results did not support the exis-
tence of a GDM-associated breast milk microbiota at 
1–3 weeks postpartum. However, it is still plausible that 
breast milk may exert an influential role in shaping the 
development of a GDM-associated infant gut microbiota 
via other breast milk components. Further research is 
therefore needed to fully understand the development of 
the gut microbiota of infants born to mothers with GDM.
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