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Abstract 

Background Per- and polyfluoroalkyl substances (PFAS) are persistent synthetic chemicals and are commonly found 
in everyday items. PFAS have been linked to disrupting glucose homeostasis, however, whether they are associated 
with gestational diabetes mellitus (GDM) risk remains inconclusive. We examined prospective associations of PFAS 
concentrations measured twice in pregnancy with GDM risk.

Methods In the PETALS pregnancy cohort, a nested case–control study which included 41 GDM cases and 87 
controls was conducted. PFAS analytes were measured in blood serum collected in both early and mid-pregnancy 
(mean [SD]: 13.9 [2.2] and 20.2 [2.2] gestational weeks, respectively), with cumulative exposure calculated by the area-
under-the-curve (AUC) to integrate both the PFAS concentration and the timing of the exposure. Individual adjusted 
weighted unconditional logistic regression models examined seven PFAS in association with GDM risk. P-values were 
corrected using the false-discovery-rate (FDR). Mixture models were analyzed with Bayesian kernel machine regres-
sion (BKMR).

Results PFDA, PFNA and PFOA were individually associated with higher GDM risk per interquartile range (IQR) in early 
pregnancy (OR [95% CI]: 1.23 [1.09, 1.38]), 1.40 [1.24, 1.58]), and 1.15 [1.04, 1.27], respectively), mid-pregnancy (1.28 
[1.15, 1.43], 1.16 [1.05, 1.28], and 1.20 [1.09, 1.33], respectively), and with cumulative exposure (1.23 [1.09, 1.38], 1.21 
[1.07, 1.37], and 1.19 [1.09, 1.31], respectively). PFOS in mid-pregnancy and with cumulative exposure was associated 
with increased GDM risk (1.41 [1.17, 1.71] and 1.33 [1.06, 1.58], respectively). PFUnDA in early pregnancy was associ-
ated with lower GDM risk (0.79 [0.64, 0.98]), whereas mid-pregnancy levels were associated with higher risk (1.49 
[1.18, 1.89]). PFHxS was associated with decreased GDM risk in early and mid-pregnancy (0.48 [0.38, 0.60] and 0.48 
[0.37, 0.63], respectively) and with cumulative exposure (0.49 [0.38,0.63]). PFPeA was not associated with GDM. Similar 
conclusions were observed in BKMR models; however, overall associations in these models were not statistically 
significant.
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Conclusions Higher risk of GDM was consistently observed in association with PFDA, PFNA, and PFOA exposure 
in both early and mid-pregnancy. Results should be corroborated in larger population-based cohorts and individuals 
of reproductive age should potentially avoid known sources of PFAS.

Keywords PFAS, GDM, Gestational diabetes, BKMR, Pregnancy

Background
Gestational diabetes mellitus (GDM) is a common com-
plication of pregnancy (7.8 per 100 US births in 2020), 
with sharp increases in incidence rates observed over 
recent years [1–3]. These rising rates are a public health 
concern given that GDM is associated with placental 
changes in pregnancy [4, 5], requires prompt and exten-
sive management during pregnancy [6], and is associ-
ated with adverse perinatal outcomes and long-term 
health outcomes for both the mother and child [7]. Spe-
cifically, GDM is a predictor of maternal type 2 diabetes 
post-pregnancy [8, 9] and delivering an infant large for 
gestational age with possible adverse cardiometabolic 
phenotypes, including obesity, metabolic syndrome and 
type 2 diabetes [10–12]. Differences in prevalence rates 
have been documented across racial/ethnic groups with 
the highest rates in Asian, followed by Hispanic and 
Black, and lowest in non-Hispanic White [2, 3]. Estab-
lished risk factors for GDM include advanced age at 
pregnancy, pre-pregnancy obesity, and excessive gesta-
tional weight gain [13–16]. In addition, recent literature 
has suggested that environmental factors, particularly 
exposure to endocrine-disrupting chemicals (EDCs) 
including per-and polyfluoroalkyl substances (PFAS) 
[17], may additionally play an important role in the risk 
of GDM [18].

PFAS are a large class of persistent synthetic chemicals 
used in numerous industrial and consumer products over 
recent decades due to their water and oil resistant prop-
erties which has resulted in widespread infiltration into 
the environment [19–22]. A common exposure route 
of PFAS to humans is through ingestion from the diet 
as compounds have been commonly found in drinking 
water and fish or being transferred into food from fast-
food packaging and non-stick (i.e., Teflon) pans [23–27]. 
Pregnancy may be a susceptible exposure period with 
heightened sensitivity to these compounds due to bio-
logical alterations occurring during gestation that are 
regulated by the endocrine system with EDCs having the 
possibility to affect various physiological processes [28].

PFAS exposure during gestation has been associ-
ated with miscarriage, low birthweight, reduced fetal 
growth, preterm birth, and preeclampsia [29–33], and 
concentration levels have shown to differ based on race 
and ethnicity [34–36]. Most studies assessing the influ-
ence of prenatal PFAS exposure on GDM risk have been 

conducted in Chinese populations with varying results, 
although positive associations have been suggested [37–
43]. Studies conducted in European and North American 
populations of predominantly non-Hispanic White par-
ticipants have indicated PFAS exposure to be associated 
with higher blood glucose levels in pregnancy, but results 
remain largely inconsistent [44–48]. In addition, previ-
ous studies have primarily only measured PFAS con-
centrations at a single timepoint in pregnancy, limiting 
the ability to determine how exposure across pregnancy 
influences risk, as PFAS levels have shown to fluctuate 
across pregnancy [49].

This case–control study, nested within the diverse pro-
spective Pregnancy Environment and Lifestyle Study 
(PETALS) cohort of pregnant individuals, assesses the asso-
ciations of seven PFAS [perfluorooctanoic acid (PFOA), 
perfluorooctanesulfonic acid (PFOS), perfluorohexane-
sulfonic acid (PFHxS), perfluorodecanoic acid (PFDA), 
perfluorononanoic acid (PFNA), perfluoroundecanoic 
acid (PFUnDA), and perfluoro-n-pentanoic acid (PFPeA)] 
measured at two time points during pregnancy with the 
risk of GDM. We hypothesize that participants with higher 
levels of PFAS concentrations during gestation will have 
greater risk of GDM.

Methods
Study population
This nested case–control study included participants in 
PETALS, a racially and ethnically diverse population-
based prospective pregnancy cohort with participants 
recruited between 2014 and 2017. Details related to 
the study design have previously been described [50]. 
Participants are members of Kaiser Permanente North-
ern California (KPNC), an integrated health care deliv-
ery system with over 4.5 million patients served and 
is demographically representative of the geographical 
coverage area [51, 52].

The flow chart of included participants from the PET-
ALS cohort in this current study is shown in Fig. 1. There 
were 3,346 pregnant individuals who were enrolled in the 
PETALS cohort by completing the baseline assessment 
(Clinic Visit 1). Among these individuals, 4.8% (N = 161) 
were missing data on GDM screening due to either a 
pregnancy loss (1.0%), no longer a KPNC member (1.4%), 
or were not screened (2.4%). Of the remaining 3,185 who 
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were screened for GDM, there were 310 GDM cases. For 
the original PETALS GDM case–control study, GDM 
cases were matched 1:2 with non-GDM controls on age 
(± 5  years), calendar time for enrollment (± 3  months), 
gestational week at the first clinic visit (± 3  weeks), and 
medical facility. For this current analysis, of the 310 GDM 
cases and 620 matched controls there were 43 GDM 
cases and 87 controls with serum collected at Clinic 
Visit 1 (CV1) available and who were also enrolled in the 
National Institute of Health’s Environmental influences 
on Child Health Outcomes (ECHO) program [53] at the 
time of the PFAS measurements sponsored by ECHO. 
For the analysis related to PFAS assessed at CV1, we 

further excluded 2 GDM cases because they were diag-
nosed with GDM prior to the serum collection. For the 
analysis related to PFAS at Clinic Visit 2 (CV2), 11 GDM 
cases were excluded because GDM was diagnosed prior 
to the serum collection at CV2. In addition, 1 GDM case 
and 3 controls were excluded because they did not have 
available serum at CV2. All participants with samples at 
CV2 also had samples at CV1. In the current study, par-
ticipants completed CV1 on average at 13.8  weeks of 
gestation (SD: 2.2; Range: 10.1 –19.0 gestational weeks) 
and is referred to in this study as early pregnancy. Partici-
pants completed CV2 on average at 20.2 weeks of gesta-
tion (SD: 2.2; Range 15.6 – 26.0 gestational weeks) and is 

Fig. 1 Flow Chart of Included Participants from the PETALS Cohort
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referred to in this study as mid-pregnancy. The average 
time between CV1 and CV2 for participants in this study 
was 6.5 (SD: 0.95) weeks.

All participants in this analysis were enrolled into PET-
ALS between 2014–2017 and provided written informed 
consent at time of enrollment. The human subjects 
committee of the Kaiser Foundation Research Institute 
approved all study design components. All participants 
included in the current analysis met the following cri-
teria: 1) singleton gestation 2) no evidence based on 
medical record review of pre-existing cancer, diabetes 
mellitus, or liver disease (due to PFAS being associated 
with liver injury [54]); 3) data on GDM screening; and 4) 
data on PFAS concentrations measured in blood serum.

GDM ascertainment
GDM was ascertained using the following standardized 
criteria implemented across KPNC: a) ≥ 2 plasma glu-
cose values during the 100-g, 3-h oral glucose tolerance 
test (OGTT) meeting or exceeding the Carpenter-Cous-
tan thresholds (≥ 5.3 mmol/L for fasting, ≥ 10.0 mmol/L 
for 1-h, ≥ 8.6  mmol/L for 2  h and ≥ 7.8  mmol/L for 
3  h) recommended by the American College of Obste-
tricians and Gynecologists [55]; or b) fasting glu-
cose ≥ 5.1 mmol/L performed alone or during the OGTT 
as recommended by the International Association of 
Diabetes and Pregnancy Study Groups and American 
Diabetes Association [56].

PFAS concentrations during gestation
A fasting blood sample was collected at baseline from 
participants at CV1 and then again at CV2 which were 
conducted in early and mid-pregnancy. Serum sam-
ples were analyzed in 2020 at the Wadsworth Center’s 
Human Health Exposure Assessment Resource (WC-
HHEAR) laboratory at the NYU Langone Medical Center 
(Dr. Kannan’s laboratory). Fourteen PFAS, specifically, 
PFHxS, PFOS, PFOA, PFNA, PFDA, PFUnDA, PFPeA, 
perfluorobutanesulfonic acid (PFBS), perfluoroheptanoic 
acid (PFHPA), perfluorododecanoic (PFDODA), perfluo-
rooctanesulfonamide (PFOSA), n-ethyl perfluorooctane 
sulfonamido acetic acid (NETFOSAA), n-methyl per-
fluorooctane sulfonamido acetic acid (NMFOSAA), and 
perfluorohexanoic acid (PFHxA) were analyzed. The full 
method for the analysis of 14 PFAS in serum has previ-
ously been described [57] and further explained in the 
Supplemental methods. This study included analytes 
with at least 50% of samples above the limit of detec-
tion (LOD), as done previously [36, 58]. Values below the 
LOD were imputed with the LOD/

√

 2 [59].

Covariates
Covariates were identified a priori from existing literature 
and were visualized using a directed acyclic graph [60] 
(DAG) and is shown in Supplemental Fig.  1. Age, race/
ethnicity, and parity information were self-reported using 
standardized questionnaires. Pre-pregnancy BMI was 
computed using weight (kg) at an average of 14  weeks 
prior to conception with 99% abstracted from the elec-
tronic health records and 1% being self-reported. Height 
(m) was measured at the first study clinic visit. Race and 
ethnicity was used as a covariate for a proxy of experi-
encing racism and discrimination and previous literature 
has indicated race and ethnicity is associated with both 
measured PFAS concentration levels [34–36], and GDM 
incidence rates [2, 3].

Statistical analysis
Differences in demographic characteristics by GDM sta-
tus and PFAS concentrations were determined by Wil-
coxon signed rank tests, student’s t tests, Kruskal Wallis 
tests and Pearson’s chi square tests. Spearman correla-
tions examined relationships across PFAS compounds at 
each time point and across timepoints within the same 
individual.

To approximate cumulative exposure across the two 
blood samples, the area under the curve (AUC) was cal-
culated to integrate both the PFAS concentration and the 
timing of exposure assessment [61] (Equation Supple-
mental Fig. 2). To properly analyze the potentially broken 
matched trios from the original matched case–control 
study within PETALS, we fit adjusted weighted uncondi-
tional logistic regression models to determine the associ-
ations of individual PFAS concentrations during gestation 
with GDM risk separately using levels measured in early 
pregnancy, mid-pregnancy, and with the AUC across the 
two time points. Each participant was assigned an inverse 
of probability weight (IPW) to be used in models. IPW 
for cases were calculated as the inverse of the number 
of cases at each time point divided by the total number 
of cases in the PETALS cohort (n = 310). Controls were 
assigned a weight based on the inverse of the predicted 
probability in a logistic regression model using all PET-
ALS controls that had GDM screening data (n = 2,875) 
with the original matching criteria. Due to the skewed 
PFAS distributions and for being a common approach 
in the literature, compounds were transformed with the 
natural log. PFAS analytes were then scaled by the rel-
evant interquartile range (IQR) based on the log-trans-
formed concentration levels for interpretations.

Since exposure to PFAS analytes occur concurrently, 
we assessed the effects of the seven PFAS as a mixture by 
fitting adjusted probit Bayesian kernel machine regres-
sion (BKMR) models on GDM risk [62]. BKMR models 
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were fit for PFAS levels in early pregnancy, mid-preg-
nancy, and across both timepoints with the AUC. For the 
BKMR models to converge, we used a pre-adjustment 
method for covariates that first fit a frequentist probit 
regression model with no PFAS analytes but all covari-
ates, and then incorporated the fitted values as a single 
adjustment covariate in the BKMR models. Each BKMR 
model fit used 50,000 Markov Chain Monte Carlo itera-
tions, and the trace plots of model parameters were visu-
ally examined to confirm model convergence. Results of 
the mixture analysis were summarized with the posterior 
inclusion probabilities (PIPs) and cross-section plots of 
the exposure response function. The association of the 
PFAS mixture with risk of GDM was examined by re-
estimating the BKMR model with the PFAS analyte of 
interest forced into the mixture and used posterior sam-
ples to estimate the odds ratio (OR) and 95% credible 
intervals (95% CI) for GDM by 10% increments of each 
single PFAS, with all other PFAS set to the median.

Analyses were conducted using SAS version 9.4 and R 
version 4.1.0 with the bkmr R package for mixture mod-
els [63]. To account for multiple comparisons, p-values ( α
=0.05) were false discovery rate (FDR) adjusted for the 
weighted unconditional logistic regression models.

Results
Our sample included 128 participants at the baseline visit 
(CV1) in early pregnancy (41 cases, 87 controls) and 113 
at CV2 in mid-pregnancy (29 cases, 84 controls). Par-
ticipants were 32 ± 5 years of age and primarily Hispanic 

(39.1%) or Asian/Pacific Islander (25.0%), followed by 
White (21.9%), Black (7%), and 7% of individuals from 
other racial/ethnic groups. The majority were multipa-
rous (55.9%). Participant characteristics of this sample 
were similar to the larger PETALS cohort [64] and char-
acteristics for the GDM cases in PETALS (n = 310) and by 
timepoints of each clinic visit (n = 41 CV1, n = 29 CV2) 
are shown in Supplemental Table  1. Demographics for 
the sample and by GDM status are shown in Table 1.

Seven of the fourteen measured PFAS analytes met 
our LOD inclusion criteria: PFHxS, PFOS, PFOA, PFNA, 
PFDA, PFUnDA, and PFPeA. Median PFAS concentra-
tions were similar between the two timepoints. Distri-
butions at each time point and the AUC are shown in 
Table  2. The paired concentrations of participants with 
samples at both clinic visits (n = 113) showed each PFAS 
to be moderately to highly correlated with one another 
(rho 0.53–0.94) and are shown in Supplemental Fig.  3. 
Within each separate timepoint, most PFAS were posi-
tively correlated with one another (rho 0.18 to 0.78), 
except for PFPeA (rho 0.09 to -0.16) (Supplemental 
Fig.  3). Significant differences in median concentrations 
by race/ethnicity groups were observed for all analytes 
except PFPeA, with highest medians observed in Asian/
Pacific Islander and Black participants. Differences in 
medians were also identified by parity and pre-pregnancy 
BMI groups (Supplemental Table 2).

In multivariable models shown in Table  3, early preg-
nancy concentrations, mid-pregnancy concentra-
tions, and the AUC of PFDA, PFNA and PFOA were 

Table 1 Participant Characteristics by GDM Cases and non-GDM Controls nested in the PETALS cohort: 2014–2017

BMI Body mass index, GDM Gestational diabetes
* Obtained by aStudent’s t test for continuous variables or bPearson’s χ2 test for categorical variables

All (N = 128) GDM Cases (N = 41) Controls (N = 87) P-value*

Age, years, mean ± SD 31.9 ± 4.9 32.4 ± 5.2 31.6 ± 4.8 0.42a

Race/ethnicity, n (%) 0.36b

 Asian/Pacific Islander 32 (25.0%) 14 (34.2%) 18 (20.7%)

 Black 9 (7.0%) 2 (4.9%) 7 (8.0%)

 Hispanic 50 (39.1%) 16 (39.0%) 34 (39.1%)

 White 28 (21.9%) 8 (19.5%) 20 (23.0%)

 Other 9 (7.0%) 1 (2.4%) 8 (9.2%)

Pre-pregnancy BMI, kg/m2, n (%) 0.06b

  < 25.0 (Underweight/Normal) 44 (34.4%) 9 (22.0%) 35 (40.2%)

 25.0–29.9 (Overweight) 41 (32.0%) 13 (31.7%) 28 (32.2%)

  ≥ 30.0 (Obese) 43 (33.6%) 19 (46.3%) 24 (27.6%)

Nulliparity, n (%) 56 (44.1%) 14 (35.0%) 42 (48.3%) 0.16b

Early Pregnancy Blood Sample, gestational 
weeks, mean ± SD

13.8 ± 2.2 13.3 ± 2.1 14.0 ± 2.1 0.06a

Mid-Pregnancy Blood Sample, gestational 
weeks, mean ± SD

20.2 ± 2.2 19.5 ± 2.2 20.4 ± 2.2 0.07a
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individually significantly associated with higher GDM 
risk. Specifically, for early pregnancy the following asso-
ciations with GDM risk were found: PFDA (OR: 1.23 
[95% CI 1.09, 1.38]), PFNA (OR:1.40 [95% CI 1.24, 1.58]), 
and PFOA (OR:1.15 [95% CI 1.04, 1.27]) per IQR. For 
mid-pregnancy, we observed the following associations: 
PFDA (OR:1.28 [95% CI 1.15, 1.43]), PFNA (OR:1.16 
[95% CI 1.05, 1.28]), and PFOA (OR:1.20 [95% CI 1.09, 
1.33]) per IQR. Finally, for the AUC the associations of 
each of these PFAS and GDM risk were as follows: PFDA 
(OR:1.23 [95% CI 1.09, 1.38]), PFNA (OR:1.21 [95% CI 
1.07, 1.37]), and PFOA (OR:1.19 [95% CI 1.09, 1.31]) per 
IQR (Table  3). Early pregnancy concentrations of PFOS 
were not associated with GDM risk, however, mid-
pregnancy concentrations and the AUC for PFOS were 

individually associated with higher GDM risk (OR:1.41 
[95% CI 1.17, 1.71] and OR: 1.33 [95% CI 1.06, 1.58], per 
IQR, respectively). For PFUnDA, early pregnancy levels 
were associated with lower GDM risk (OR: 0.79 per IQR 
[95% CI 0.64, 0.98]), whereas mid-pregnancy levels were 
associated with higher GDM risk (OR:1.49 per IQR [95% 
CI 1.18, 1.89]). For PFHxS, concentrations were asso-
ciated with decreased risk of GDM in early pregnancy 
(OR:0.48 [95% CI 0.38, 0.60]), mid-pregnancy (OR: 0.48 
[95% CI 0.37, 0.63]) and with the AUC (OR: 0.49 [95% 
CI 0.38, 0.63]) per IQR. PFPeA was not associated with 
GDM risk at either timepoint or with the AUC (Table 3).

In mixture analyses, PFHxS had the largest contribu-
tion to the mixture (Supplemental Table  3), although 
PIPs for each PFAS were moderate (Early Pregnancy: 

Table 2 Distributions for Pregnancy Serum PFAS Analytes in the PETALS cohort: 2014–2017

NA Not applicable
* Limit of detection (LOD) for PFHxS, PFDA, PFOA, PFUnDA, PFOS = 0.02 ng/mL; PFPeA = 0.0224 ng/mL; PFNA = 0.032 ng/mL

Early pregnancy samples collected at 13.9 ± 2.1 weeks of gestation and mid-pregnancy samples collected at 20.1 ± 2.2 weeks of gestation
a Calculated (in ng/mL × day) using the formula: M1× D1+

(M1+M2)×(D2−D1)
2

+M2× (197− D2) , where M1 and M2 were concentrations of PFAS at each time 
point, D1 and D2 were days of gestation at the two time points, respectively, and 197 was the maximum D2 within this sample

Analyte % Detected* Median (IQR)

Perfluorodecanoic acid (PFDA), ng/mL
 Early Pregnancy 87.5% 0.09 (0.04, 0.14)

 Mid-Pregnancy 90.3% 0.07 (0.04, 0.13)

 Area under the  curvea NA 13.24 (6.90, 23.51)

Perfluorohexane-1-sulphonic acid (PFHxS), ng/mL
 Early Pregnancy 100% 1.20 (0.91, 1.61)

 Mid-Pregnancy 100% 1.23 (1.01, 1.68)

 Area under the  curvea NA 222.55 (174.49, 295.24)

Perfluorononanoic acid (PFNA), ng/mL
 Early Pregnancy 100% 0.39 (0.28, 0.51)

 Mid-Pregnancy 100% 0.35 (0.26, 0.47)

 Area under the  curvea NA 70.13 (50.68, 89.37)

Perfluorooctanesulfonic acid (PFOS), ng/mL
 Early Pregnancy 100% 2.46 (1.67, 3.40)

 Mid-Pregnancy 100% 2.42 (1.69, 3.30)

 Area under the  curvea NA 438.11 (316.51, 634.87)

Perfluorooctanoic acid (PFOA), ng/mL
 Early Pregnancy 100% 0.71 (0.46, 1.07)

 Mid-Pregnancy 100% 0.69 (0.47, 0.97)

 Area under the  curvea NA 130.72 (87.47, 188.41)

Perfluoroundecanoic acid (PFUnDA), ng/mL
 Early Pregnancy 1 93.8% 0.10 (0.05, 0.19)

 Mid-Pregnancy 2 93.8% 0.10 (0.05, 0.17)

 Area under the  curvea NA 14.87 (9.22, 33.90)

Perfluoro-n-pentanoic acid (PFPeA), ng/mL
 Early Pregnancy 1 100% 0.28 (0.20, 0.42)

 Mid-Pregnancy 2 99.1% 0.29 (0.19, 0.43)

 Area under the  curvea NA 53.40 (37.74, 76.75)
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0.31–0.61; Mid-Pregnancy: 0.34–0.51). In the cross-
section plots of the exposure response function for each 
PFAS, PFNA, PFOA and PFUnDA showed suggestive 
positive associations with GDM risk, while PFHxS sug-
gested an inverse association with GDM risk (Fig.  2 
(AUC) and Supplemental Figs.  4–5). No significant 
associations were found at any timepoint for the overall 
mixture effect via summary ORs (Fig. 3 (AUC) and Sup-
plemental Figs. 6–7).

Discussion
This nested case–control study within the racially and 
ethnically diverse PETALS cohort found consistent evi-
dence that prenatal exposure to PFAS, notably PFDA, 
PFNA, and PFOA, during early and mid-pregnancy 
was significantly associated with higher risk of GDM. 
For PFOS and PFUnDA, increased risk of GDM was 
observed only for exposure during mid-pregnancy. In 
contrast, PFHxS was associated with decreased risk of 

GDM during early and mid-pregnancy. Mixture results 
suggested similar findings, but overall mixture models 
were not statistically significant.

The current literature of PFAS exposure during gesta-
tion and risk of GDM has primarily been assessed using 
PFAS levels collected at only one timepoint in pregnancy. 
Although PFAS have long half-lives, analyte levels over-
all have been shown to vary across pregnancy in the 
same individual [49], and critical windows of exposure 
to PFAS may occur during gestation. It is also possible 
that maternal metabolic shifts occur including differ-
ent rates of transplacental PFAS transfer to the fetus and 
blood volume expansion or mobilization of stored PFAS 
across pregnancy [65, 66] which may explain inverse 
associations or the possibility of reverse causation for 
samples collected late in pregnancy [67]. In our study, 
results using early pregnancy samples compared to mid-
pregnancy samples were relatively consistent, although 
different conclusions were made for PFUnDA and PFOS 
across timepoints which may indicate less evidence for 

Table 3 Adjusted Odds Ratio (95% CI) for the Association of Pregnancy Serum PFAS with Gestational Diabetes: a Nested Case–Control 
Study in the PETALS Cohort: 2014–2017

Participants completed Clinic Visit 1 in early pregnancy on average at 13.9 ± 2.2 weeks of gestation and Clinic Visit 2 in mid pregnancy on average at 20.1 ± 2.2 weeks of 
gestation

The average time between clinic visits was 6.4 (SD: 0.95) weeks. OR (95% CI) is per log IQR (interquartile range) increment
† P-value adjusted for false discovery rate (FDR)
a Models adjusted for age, pre-pregnancy BMI, parity, and race/ethnicity
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exposure to these analytes with risk of GDM. It is also 
possible that the physiological changes occurring dur-
ing mid-pregnancy, such as increased insulin resistance 
and hormonal shifts in mid to late pregnancy may inter-
act with PFOS and PFUnDA exposure differently com-
pared to earlier in pregnancy [68]. An example includes 
Human Placental Lactogen (hPL) which is produced by 

the placenta and helps regulate maternal metabolism and 
fetal growth which steadily increases during the second 
trimester and works to decrease the mother’s sensitivity 
to insulin, making more glucose available for the growing 
fetus [69].

Higher levels of PFAS have been associated with type 2 
diabetes [70, 71], increased glucose and insulin levels in 

Fig. 2 Exposure response function for each PFAS from Bayesian kernel machine regression models with the Area Under the Curve (AUC) 
between the two clinic visits

Fig. 3 Overall PFAS Mixture Effect with Odds of GDM, Area Under the Curve
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pregnancy [17] and may play an important role in GDM 
development [18]. During pregnancy, the body becomes 
more resistant to insulin due to hormonal changes and 
PFAS exposure may exacerbates this insulin resistance, 
thereby increasing the risk of GDM [68]. Proposed mech-
anisms of PFAS influences on glucose levels observed 
in pregnancy include inflammation and oxidative stress 
which can impair insulin signaling and glucose metabo-
lism, alterations in fatty acid and adipose tissue dis-
function including changes in adipokine secretion and 
adipocyte differentiation, which is associated with insulin 
resistance, and activation of peroxisome proliferator-acti-
vated receptors (PPARs) based on toxicological evidence 
[72, 73]. However, previous epidemiological studies on 
the association between PFAS exposure and GDM risk 
are inconclusive due to suggesting differential risks of 
certain analytes with GDM risk.

In studies conducted within the United States examin-
ing the association between PFAS exposure during ges-
tation and GDM risk, PFAS were assessed either before 
pregnancy [74] or in the first trimester [46, 75] and 
included populations of primarily non-Hispanic White 
participants, except for Rahman et  al. which included a 
diverse study population [75]. Our findings that PFOA 
and PFNA were associated with greater risk of GDM is 
consistent with results from two previous US cohorts 
[74, 75] though a third reported null associations with 
PFOA but observed PFOS to be a primary driver within 
BKMR models for increased continuous glucose levels 
[46]. PFOS and PFNA had significant positive associa-
tions with blood glucose levels among Asian participants 
with the largest effect estimates compared to other racial 
groups [46]. The inverse association found with PFHxS 
has not been replicated in other studies [41, 43–45, 47]. 
However, inverse associations have been reported with 
other cardiometabolic conditions in pregnancy from pre-
natal PFHxS exposure [76]. This inverse association with 
blood pressure in pregnancy was thought to be a chance 
finding from the authors due to not having a biologi-
cal mechanism known that would explain this relation-
ship [76]. It is possible that the inverse associations in 
this current study may also be due to chance even after 
FDR adjusting the p-values. Other hypotheses include 
random variation in PFHxS due to the small sample size 
creating potential noise in the data, a complex interaction 
with other PFAS compounds in that PFHxS may inter-
act with other compounds in ways that are not yet fully 
understood which has potentially led to this unexpected 
association, as well as potential effect modification by a 
third variable (i.e., race/ethnicity, pre-pregnancy BMI, 
or maternal age), which we were interested in assessing 

but were unable to produce reliable estimates due to the 
small sample sizes within each strata.

Studies conducted in Chinese populations produced 
results that have been inconclusive. Wang et  al. found 
that early pregnancy levels of PFOA and PFOS were 
not associated with GDM risk [40], however, PFOA was 
significantly associated with fasting insulin and homeo-
stasis model assessment of insulin resistance [40]. Xu 
et  al. found PFBS and PFDoA to be positively associ-
ated with GDM risk, but null for PFAS that overlapped 
in this study [42]. Liu et al. used summed values based 
on structural characteristics of PFAS and found total 
perfluoroalkyl carboxylates (including PFOA, PFNA, 
PFDA, PFUnDA among others) to be positively associ-
ated with GDM risk [38], which is consistent with ana-
lytes showing higher risk of GDM within our results. 
Yu et al. conducted a BKMR model and found that the 
PFAS mixture exposure was positively associated with 
GDM incidence and PFOS, PFNA and PFHpA were 
main contributors to the mixture [43]. This was incon-
sistent with our findings as PFHxS was a primary con-
tributor although PFNA was the secondary contributor 
for both timepoints and the AUC. Our mixture analysis 
through BKMR was also not statistically significant and 
we hypothesize that the small sample size was a hinder-
ance and that the complex inverse and positive asso-
ciations across analytes may have made the mixture 
difficult to disentangle.

Prominent strengths of this study include the longi-
tudinal design, diverse study population from an inte-
grated health care system with universal screening for 
GDM, the availability of pregnancy levels of glycemia 
for rigorous and standardized assessment of GDM and 
multiple time points for PFAS concentration assess-
ment within pregnancy which held temporality due 
to being collected prior to GDM ascertainment. This 
study also incorporated mixture methods using BKMR 
which has been underutilized and identified as a gap 
within the current literature [71]. Mixture approaches 
are important when assessing these associations 
due to the concurrent and correlated nature of the 
exposures.

Limitations are also present. The sample size is rel-
atively small, but the original 2–1 matching design 
increased statistical power for the individual models 
and all results were FDR-adjusted to reduce the risk of 
chance findings. The mixture models suggested similar 
conclusions to the individual models but did not reach 
statistical significance, likely due to not being well pow-
ered for BKMR models. Additionally, low detection fre-
quencies (< 50% of samples) for seven of the fourteen 
PFAS inhibited inclusion. Lastly, true overall expo-
sure to PFAS across early to mid-pregnancy was not 
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obtained and instead used the AUC as a proxy meas-
urement. However, AUC results were consistent to 
early and mid-pregnancy results.

Conclusions
This prospective nested case–control study observed 
that higher serum levels of PFDA, PFNA, and PFOA 
during early and mid-pregnancy were consistently asso-
ciated with higher GDM risk in an ethnically diverse 
population. It is important to corroborate results in 
larger sample sizes and to potentially advise individuals 
of reproductive age to avoid known sources of PFAS.
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