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Abstract 

Background Preeclampsia (PE) is a serious pregnancy complication that can adversely affect the mother and fetus. 
Necroptosis is a recently discovered new form of programmed cell death involved in the pathological process of 
various pregnancy complications. Our study aimed to identify the necroptosis-related differentially expressed genes 
(NRDEGs), create a diagnosis model and related disease subtypes model based on these genes, and further investi-
gate their relationship with immune infiltration.

Methods In this study, we identified NRDEGs by analyzing data from various databases, including Molecular Sig-
natures, GeneCards, and Gene Expression Omnibus (GEO). Using minor absolute shrinkage and selection operator 
(LASSO) and logistic Cox regression analysis, we developed a novel PE diagnosis model based on NRDEGs. Further-
more, we developed PE subtype models using consensus clustering analysis based on key gene modules screened 
out by weighted correlation network analysis (WGCNA). Finally, we identified the difference in immune infiltration 
between the PE and control groups as well as between both PE subtypes by analyzing the immune cell infiltration 
across combined datasets and PE datasets.

Results Our study discovered that the necroptosis pathway was significantly enriched and active in PE samples. We 
identified nine NRDEGs that involved in this pathway, including BRAF, PAWR, USP22, SYNCRIP, KRT86, MERTK, BAP1, 
CXCL5, and STK38. Additionally, we developed a diagnostic model based on a regression model including six NRDEGs 
and identified two PE subtypes: Cluster1 and Cluster2, based on key module genes. Furthermore, correlation analysis 
showed that the abundance of immune cell infiltration was related to necroptosis genes and PE disease subtypes.

Conclusion According to the present study, necroptosis is a phenomenon that occurs in PE and is connected to 
immune cell infiltration. This result suggests that necroptosis and immune-related factors may be the underlying 
mechanisms of PE pathophysiology. This study opens new avenues for future research into PE’s pathogenesis and 
treatment options.
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Background
Preeclampsia (PE), a pregnancy-specific cardiovascular 
problem that affects 2 to 8% of women and is a substan-
tial cause of maternal and fetal mortality, is defined by 
newly developed hypertension after 20  weeks of gesta-
tion, along with proteinurias or multiple organ injuries, 
such as renal insufficiency, liver dysfunction, cerebral or 
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visual disturbances, and edema [1]. Although, during the 
past few decades, considerable research has been done 
on the causes of PE. However, its etiology and pathology 
are still poorly understood, which remains a severe chal-
lenge in obstetrics [2]. Hypertension control and mater-
nal–fetal monitoring have limited therapeutic effects; the 
only effective treatment for PE is still timely pregnancy 
termination [3]. Early identification, precise diagnosis, 
and effective therapy of PE are crucial to lowering the 
risk of poor maternal–fetal outcomes. Therefore, find-
ing new possible biomarkers to screen for, diagnose, and 
track PE is essential.

The pathogenesis of PE is complex and involves vari-
ous mechanisms, such as immunological dysregulation, 
damage to the vascular endothelial cell, and hyperinflam-
matory response [4], etc. The predominant view is that 
aberrant trophoblast cell invasion might result in inad-
equate remodeling of the maternal spiral arteries, which 
would cause uteroplacental high resistance circulation, 
and placental ischemia and hypoxia [5]. In recent years, 
numerous types of research have shown that necroptosis 
plays a vital role in trophoblast injury and placental phys-
iology [6, 7] and that necroptosis is distinct from pyrop-
tosis and apoptosis [8].

Necroptosis is a recently discovered type of pro-
grammed cell death with hallmark necrosis characteris-
tics [9]. It is a modulated necrotic cell death mediated by 
RIP1 and RIP3 kinases with both passive and active pro-
inflammatory functions. Necroptosis combines several 
features of apoptosis and necrosis, such as membrane 
integrity loss, organelle swelling, cell lysis, intracellular 
component leaking, and death receptor ligand induc-
tion [10]. Numerous research has recently indicated 
that necroptosis is involved in the pathogenesis of car-
diovascular illnesses [11, 12], tumors [13], inflammatory 
lesions [14], neurodegenerative diseases [15], etc. Recent 
research has demonstrated that necroptosis is crucial to 
the incidence and progression of PE [16]. Therefore, the 
identification of necroptosis-related biomarkers is essen-
tial for the early diagnosis of PE and helpful for the early 
intervention of patients with PE.

In the past ten years, immune infiltration has attracted 
much attention to cancer. Increasing research has indi-
cated that immune inflammation is involved in the 
pathophysiology of PE [17, 18]. Numerous bioinformatic 
analyses also suggest the difference in immune infiltration 
between PE and conventional control [19]. However, lit-
tle is known about the potential mechanisms of immune 
infiltration in PE. Given the significance of immune cell 
infiltration in the pathogenesis of PE, immune cell infil-
tration analysis is helpful in screening the key genes, 
which could be crucial in identifying molecular markers 
of PE subtypes and further precision treatment.

In this work, using the gene expression omnibus (GEO) 
database, we used comprehensive bioinformatics analysis 
to explore the key genes and potential functional mech-
anisms of necroptosis in PE. Additionally, to compre-
hend the potential molecular immunity process during 
PE development, we overviewed the immune infiltra-
tion landscape and probed carefully into the connection 
between necroptosis and infiltrating immune cells.

Materials and methods
Data collection and processing
The PE-related GSE60438 dataset [20] was downloaded 
from the GEO database (https:// www. ncbi. nlm. nih. gov/ 
geo/) through the R package “GEOquery” [21]. Dataset 
samples were from decidua basalis of homo-sapiens, 
and the microarray platforms were GPL10558 and 
GPL6884, respectively. The GPL10558 contained 35 PE 
and 42 control samples, and the GPL6884 included 25 
PE and 23 control samples. All PE and control samples 
used in the study are displayed in Table 1.

Necroptosis-related genes (NRGs) were collected from 
the GeneCards database [22] (https:// www. genec ards. org/) 
and Molecular Signatures Database (MSigDB) [23] (https:// 
www. gsea- msigdb.org/gsea/msigdb/index.jsp). The Gen-
eCards database provides comprehensive information on 
human genes. A total of 623 NRGs were obtained after using 
"Necroptosis" as the search keyword and keeping only "Pro-
tein Coding" in the GeneCards database. Similarly, eight 
NRGs were obtained by searching the MSigDB database with 
"Necroptosis" as the keyword necroptotic signaling pathway 
gene set contained. After combined deduplication, 623 NRGs 
were obtained, and the details are shown in Table S1.

The combined datasets were obtained by debatch-
processing dataset GSE60438 by the R package “sva” 
[24], which contains 60 PE samples and 65 control 
samples. Finally, the combined GEO datasets were 
processed by the R package “limma” [25] to remove 
batch effects, standardize, annotate probes and 
normalize.

Table 1 GEO microarray chip information

PE Pre-eclampsia, GEO Gene Expression Omnibus

GSE60438

Platform GPL10558 GPL6884

Species Homo sapiens Homo sapiens

Tissue Decidua basalis Decidua basalis

Samples in PE Group 35 25

Samples in Control Group 42 23

Reference PMID: 26010865 PMID: 26010865

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.gsea
https://www.gsea
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Identification of the key necroptosis‑related DEGs
We picked out differentially expressed genes (DEGs) 
using the R package “limma” (adjust p-value < 0.05 
and | logFC (Fold Change) |> 0). Among them, adjust 
p-value < 0.05 and logFC > 0 were up-regulated DEGs, 
adjust p-value < 0.05 and logFC < 0 were down-regu-
lated DEGs. The R packages “heatmap” and “ggplot2” 
were used to draw heat and volcano maps.

Functional and pathway enrichment analysis
Gene Ontology (GO) [26] is a common method for 
large-scale functional enrichment studies, includ-
ing cell composition (CC), biological process (BP) and 
molecular function (MF). Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [27] is a widely used database 
containing information about genomes, biological pro-
cesses, illnesses, and medications. GO and KEGG anal-
yses of the NRDEGs were performed by the R package 
“ClusterProfiler” [28] and visualized by the R package 
“ggplot2”.

Gene set enrichment analysis and gene set variation 
analysis
Gene Set Enrichment Analysis (GSEA) [29] is a cal-
culational technique that assesses whether a specified 
set of genes displays statistically significant concordant 
differences between both biological states. GSEA was 
carried out in this study using the R package "Cluster-
Profiler." Each analysis procedure was performed 1000 
times. The following parameters were utilized in the 
GSEA: seed 2020, 1000 computations, 10 minimum and 
500 maximum number of genes in each gene set, and 
adjust p-value correction method of Benjamini-Hoch-
berg (BH). The MSigDB database’s "c2.cp.all.v2022.1.hs.
symbols.gmt [all canonical pathways](3050)" gene set 
was utilized by GSEA for enrichment analysis. Statisti-
cally significant enrichment was defined as a function 
or pathway term with a false discovery rate (FDR) < 0.25 
and adjust p-value < 0.05.

Gene Set Variation Analysis (GSVA) [30] is a non-
parametric unsupervised analysis method that evalu-
ates the gene set enrichment results of the microarray 
nuclear transcriptome by transforming the expression 
matrix of genes between different samples into the 
expression matrix of gene sets between samples to eval-
uate whether different pathways are enriched between 
different samples. Genes in combined datasets and 
genes in the "c2.all.v7.5.1.symbols.gmt" gene set were 
accessed via the MSigDB database. We estimated the 
difference in its functional enrichment between PE and 
control groups. |logFC|> 0.25 and an adjusted p-value 
of less than 0.05 were significantly enriched.

GSEA and GSVA analyses were used to identify rich 
biological pathways and gene sets in DEGs and key 
module genes, respectively. Although both methods 
are commonly used in gene expression analysis, they 
provide complementary information. GSEA focuses 
on identifying differentially expressed gene sets, while 
GSVA provides a more continuous measure of pathway 
activity. By using both methods, we aim to gain a more 
complete understanding of the underlying biology of PE.

Construction of a diagnostic model for preeclampsia
To obtain the PE diagnostic models of the combined 
datasets, we screened a logistic regression analysis based 
on NRDEGs by p-value < 0.05, a logistic regression model 
was constructed, and then the molecular expression of 
NRDEGs included in the model was displayed as a forest 
plot. Then, the NRDEGs included in the logistic regres-
sion model were subjected to the least absolute shrink-
age and selection operator (LASSO) logistic regression 
analysis using the R package "glmnet" [31], aiming to 
avoid overfitting and improve generalization ability. The 
outcomes of the LASSO regression analysis were dis-
played using diagnostic model maps and variable trajec-
tory maps.

The nomogram [32] displays the functional relation-
ship between multiple independent variables by a clus-
ter of disjoint line segments in a rectangular coordinate 
system. The nomogram was utilized to perform the inter-
relationships of NRDEGs included in the LASSO regres-
sion model using the R package "rms". Finally, based on 
the LASSO regression model, we assessed the precision 
and discrimination of the PE diagnostic model using the 
calibration curve and decision curve analysis (DCA) [33].

Construction of necroptosis score and weighted gene 
association network analysis
Single-sample gene-set enrichment analysis (ssGSEA) 
could calculate the relative abundance of each gene in a 
dataset sample. Necroptosis score (N Score) is a meas-
ure of the overall expression of genes associated with 
NRDEGs, as determined by the ssGSEA algorithm. N 
Score was calculated for all samples based on the expres-
sion matrix of the combined datasets via the ssGSEA 
algorithm by the GSVA package. Finally, the N score’s 
accuracy was evaluated by drawing a group comparison 
map using the R package "ggplot2" and the ROC curve 
using the R package "pROC."

Weighted Correlation Network Analysis (WGCNA) 
[34] is a systems biology technique used to describe the 
pattern of gene connection between several samples, 
which be used to find gene sets with highly synergistic 
alterations. We build a weighted co-expression network 
of potential NRDEGs by the R package "WGCNA" [35]. 
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Subsequently, the variance of all the genes in the com-
bined datasets was calculated, and hierarchical cluster-
ing trees were built based on the correlation coefficients 
between genes. The various cluster tree branches cor-
respond to various gene modules. Various colors repre-
sent different modules. Then the module significance is 
determined by screening the top 25% of variant genes, 
establishing a minimum of 25 genes module, choosing 
an optimal soft threshold of 6, measuring a scale-free 
fitting index of 0.90, determining a shear height of 0.20, 
calculating the correlation between the N Score and 
each module’s recording genes. Finally, the modules of |r 
value|> 0.30 were screened, and all modules’ genes inter-
sected with NRDEGs, respectively. All intersection genes 
obtained from different modules were key module genes. 
Only modules with intersection genes were retained and 
drawn by the Venn diagram.

Protein–protein interaction network and analysis of key 
modules genes
Protein–protein interaction (PPI) network is composed 
of proteins interacting. The STRING database [36]
(https:// string- db. org/) is a database that searches for 
connections between known and forecasted proteins. 
In this study, based on key module genes, a PPI network 
connected to differentially expressed genes was built 
using the STRING database (minimum needed interac-
tion score: low confidence (0.150) as the standard) and 
visualized by Cytoscape [37] software.

To assess the diagnostic effect of key module gene’s 
expression in PE. The receiver operating characteristic 
(ROC) curve [38] analyzes coordinate schema that can 
choose the best model, eliminate the second-best model, 
or establish the best threshold within the same model. 
The ROC curve is a composite measure of sensitivity and 
specificity for the continuous variables and the correla-
tion between the two is demonstrated by the composi-
tion technique.

The ROC curves of key module genes in PE were plot-
ted using the R package "pROC" and the AUC of the 
ROC curve was computed. The ROC curve’s AUC typi-
cally ranges from 0.5 to 1. The diagnostic performance is 
better the closer the AUC is to 1. The accuracy was low 
when AUC was between 0.5 and 0.7, moderate when 
AUC was between 0.7 and 0.9, and high when AUC was 
above 0.9. Finally, the R package "igraph" was used to cre-
ate a correlation presentation of chord diagrams based on 
Spearman’s correlation analysis of key module genes. The 
absolute r value below 0.3 was weak, or no correlation, 
0.3 to 0.5 was little correlation, 0.5 to 0.8 was moderate, 
and above 0.8 was a strong correlation.

Construction of disease subtypes in preeclampsia
Consensus Clustering is a resampling-based algorithm 
used to identify each member and their subgroup num-
ber and verify the rationality of the clustering. It is a 
process that involves several iterations across dataset 
subsamples and provides an indicator of cluster sta-
bility and parameter choices by subsampling to intro-
duce sampling variability. To identify different disease 
subtypes of PE, we classified key module genes into 
various clusters by consensus clustering [39]using the 
R package "ConsensusClusterPlus" [40] (50 iterations, 
80% resampling rate Pearson correlation). To assess the 
diagnostic efficacy of key module gene expression in 
different disease subtypes of PE, the R package "pROC" 
was applied to plot the Curve ROC of key module genes 
in different disease subtypes of PE and calculate the 
AUC of the ROC curve.

Immune infiltration analyses
CIBERSORT [41] (https:// ciber sortx. stanf ord. edu/) 
is based on linear support vector regression to decon-
volute the transcriptome expression matrix to esti-
mate the composition and abundance of immune 
cells in mixed cells. We calculated the proportion of 
22 immune cell types from combined datasets using 
the CIBERSORT algorithm to verify the relationship 
between key module genes and the immune microen-
vironment. We displayed correlation heat maps by the 
R package "pheatmap." The enrichment score was set 
to > 0.

In addition, the immune cell infiltrates matrix of PE 
subtypes was analyzed by ssGSEA [42] with the R pack-
age "GSVA" based on the relative abundance of every 
immunocyte infiltrate in PE in each sample, filtering 
and outputting the samples with p-value < 0.05. Lastly, 
the correlation analysis results between key module 
genes and infiltrating immune cells in disease subtypes 
of PE were shown in correlation heat maps by the R 
package "pheatmap."

Statistical analysis
All statistical charts and analyses were conducted 
using R (Version 4.2.0). Continuous variables were 
represented by the mean ± standard deviation (SD). A 
Wilcoxon rank-sum test was used to compare the two 
groups’ differences. Utilize Spearman correlation anal-
ysis to calculate the correlation coefficient between 
various variables. The pROC package was also utilized 
to perform ROC analysis and the widely-used binary 
evaluation. A p-value < 0.05 was regarded as statistically 
significant in each test.

https://string-db.org/
https://cibersortx.stanford.edu/
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Results
Workflow chart
To clarify the research process, we show our study’s 
workflow in Fig. 1.

Merging of preeclampsia datasets
The batch effects in dataset GSE60438 were eliminated 
using the R package "sva" to obtain combined datasets. 
The distribution boxplot and PCA plot findings demon-
strated that batch removal reduced the batch effect of 
samples in the PE dataset (shown in Fig. 2A-D).

Identification of NRDEGs
The combined datasets’ data were classified into PE and 
control groups. To explore the gene expression varia-
tions between the PE and control groups in combined 
datasets, we subjected the combined datasets to a dis-
crepant analysis using the R package "limma" to obtain 
the DEGs of the two datasets. A total of 175 DEGs meet-
ing |logFC|> 0 and adjust p-value < 0.05 were obtained. 

Among them, 85 genes were up-regulated (logFC > 0 and 
adjust p-value < 0.05) and 90 genes were down-regulated 
( logFC < 0 and adjust p-value < 0.05). The volcano map 
visualized the DEGs (Fig.  3A). Secondly, 9 NRDEGs 
were obtained by taking the intersection between all the 
obtained DEGs and NRGs and drawing them using by 
Venn diagram. The nine NRDEGs were BRAF, PAWR, 
USP22, SYNCRIP, KRT86, MERTK, BAP1, CXCL5 
and STK38 (Fig.  3B). Finally, the expression differences 
of NRDEGs between different sample groups in com-
bined datasets were analyzed, and heatmap of the anal-
ysis results was presented by the R package "pheatmap" 
(Fig. 3C).

GO and KEGG pathway enrichment analysis of NRDEGs
Nine NRDEGs were analyzed by GO and KEGG 
pathway analysis (shown in Table  2). The functional 
enrichment of NRDEGs was examined using the three 
components of the GO annotations: CC, BP, and MF. 
The NRDEGs in PE were mainly related to BP (such 

Fig. 1 Flow chart for the comprehensive analysis of NRDEGs. PE, Pre-eclampsia; DEGs, Differentially Expressed Genes; NRGs, Necroptosis-Related 
Genes; NRDEGs, Necroptosis-Related Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, 
Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis; LASSO, Least Absolute Shrinkage and Selection Operator; WGCNA, Weighted 
Correlation Network Analysis; PPI, Protein–Protein Interaction
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as monoubiquitinated histone deubiquitination, mon-
oubiquitinated histone H2A deubiquitination, mon-
oubiquitinated protein deubiquitination, histone 
deubiquitination and leukocyte homeostasis); CC (such 
as SAGA complex, PCG protein complex, SAGA-type 
complex, histone acetyltransferase complex and cata-
lytic step 2 spliceosome); MF (such as protein serine/
threonine/tyrosine kinase activity, cysteine-type deu-
biquitinase activity, deubiquitinase activity, ubiqui-
tin-like protein peptidase activity and cysteine-type 
peptidase activity). KEGG analysis was conducted to 
determine the relationship between NRDEGs and sign-
aling pathways. The NRDEGs were mainly associated 
with a chemokine signaling pathway, thyroid cancer, 
bladder cancer, endometrial cancer and IL-17 signaling 
pathway. The findings of an investigation of KEGG and 
GO pathway enrichment were visualized by bar charts 
(Fig. 4A). Meanwhile, the network diagrams of BP, CC, 
MF and pathway were created using the results of GO 
and KEGG’s enrichment analysis (Fig. 4B-E).

Gene set enrichment analysis
GSEA performed a relationship between the expression 
of all genes in combined datasets and BP, CCs, and MF. 
Twenty pathways were obtained by GSEA (Fig. 5A), and 
the specific results are shown in Table  3. According to 
GSEA, PE had considerably higher levels of gene expres-
sion related to peptide hormone synthesis (Fig. 5B), cell 
adhesion protein cleavage during death (Fig.  5C), apop-
tosis (Fig. 5D), and TNFR2 non-canonical NF-B pathway 
(Fig. 5E).

Gene set variation analysis
To explore biological differences between PE and control 
groups, we performed GSVA and screened out thirty-
three statistically significant pathways (shown in Table 
S2). These pathways were Mitochondrial fatty acid beat 
oxidation of saturated fatty acids; Glycolysis; Hypoxia; 
Activated NTRK2 signals through PI3K; AKT pathway 
targets; Mitochondrial long chain fatty acid beta-oxida-
tion; TP53 regulates transcription of death receptors and 

Fig. 2 Batch effects removal of GSE60438. A‑B. Combined datasets distribution boxplots before (A) and after (B) debatching. C‑D. 
Combined datasets PCA plot before (A) and after (B) debatching. PCA, Principal Component Analysis; PE, Pre-eclampsia. Yellow is the dataset 
GSE60438-GPL6884; green is the dataset GSE60438-GPL10558
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ligands; Beta oxidation of decanoyl CoA to octanoyl CoA; 
Erythropoietin activates STAT5; Interleukin-1 process-
ing; Adipogenic genes repressed by SIRT1; TRIF medi-
ated programmed cell death; IFN response not via IRF3; 
MET activates PI3k-AKT signaling; IFN-a pathway, etc. 
Then, visualized by boxplot (Fig. S1A) and heatmap (Fig. 
S2B) (criteria for screening pathway:| logFC |> 0.25 and 
adjust p-value < 0.05).

Construction of a diagnostic model for preeclampsia
To establish the diagnostic worth of nine NRDEGs in PE, 
we built a logistic regression model based on the nine 
NRDEGs, including BRAF, PAWR, USP22, SYNCRIP, 
KRT86, MERTK, BAP1, CXCL5 and STK38 of logistic 
regression, and visualized by forest plot (Fig. 6A). Then, 
based on the 9 NRDEGs, the LASSO regression model 
was constructed and visualized by LASSO regression 
model plot (Fig. 6B) and LASSO variable trajectory plot 

(Fig.  6C). The results showed that the LASSO regres-
sion model including 6 NRDEGs, such as BAP1, BRAF, 
KRT86, MERTK, PAWR, and USP22. The 6 NRDEGs 
were used to construct a nomogram for interrelation-
ships of NRDEGs (Fig.  6D). BRAF and PAWR had high 
diagnostic utility for PE, while MERTK had low diagnos-
tic utility. In addition, to judge the accuracy and resolu-
tion of the diagnostic model for PE, a calibration curve 
was drawn with calibration analysis, and the predictive 
effect of the model on the actual results was evaluated 
according to the matching between the actual probabili-
ties and the predicted probabilities of the model under 
different conditions (Fig.  6E). Calibration curve of PE 
diagnostic model shows that the calibration line shown 
by the dotted line is slightly different from the diagonal 
line of the ideal model, but it is close to matching. Fur-
ther, DCA assessed the role of the PE diagnostic model 
in clinical utility, and results were demonstrated (Fig. 6F). 

Fig. 3 Combined datasets differential gene expression analysis. A. The volcano plot of DEGs of PE and control groups in combined datasets. B. Venn 
diagram displaying the overlap of genes between NRGs and combined datasets’ DEGs. C. Clustered heatmap of NRDEGs in combined datasets. PE, 
Pre-eclampsia; DEGs, Differentially Expressed Genes; NRGs, Necroptosis-Related Genes; NRDEGs, Necroptosis-Related Differentially Expressed Genes. 
Green represents the control group; purple represents the PE group
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When the line of the model is higher than all positive and 
all negative in a particular range, the larger the range, the 
more net income, and the better the model effect. The 
results show that the line stability of the model is higher 
than all positive and all negative in a certain range, the 
net income of the model is more, and the effect of the 
model is better.

Construction of necroptosis score and weighted gene 
association network analysis
The N Score of all samples was calculated using the 
ssGSEA method based on the expression of six NRDEGs 
in the diagnostic model. The difference in N Score was 
highly statistically significant between PE and the con-
trol group (p-value < 0.001) and visualized by boxplots 
(Fig. 7A). We utilized a ROC curve to illustrate the clini-
cal usefulness of N Score in PE diagnosis to investigate its 
advantages. As shown in Fig. 7B, the AUC value of the N 

Score was 0.834 (CI = 0.761–0.907), which is considered 
capable of diagnosing PE with excellent specificity and 
sensitivity.

Based on PE-related combined datasets, WGCNA was 
used for genes with the highest 25% variance in com-
bined datasets to identify the co-expression module. As 
shown in Fig.  7C, the scale-free fitting index is on the 
vertical axis, while the soft threshold is on the horizon-
tal axis. The network is more consistent with scale-free 
network features the higher the scale-free fitting index 
is. The outcome demonstrated that the ideal soft thresh-
old, based on the scale-free network, was six when the 
scale-free fitting index was 0.90. And then, based on the 
co-expression network with the optimal soft threshold, 
16 modules, including MElightcyan, MEsalmon, MEblue, 
MEmagenta, MElightgreen, MEpurple, MEmidnightblue, 
MEcyan, MEgrey, MEgreenyellow, MEbrown, MEgreen, 
MEpink, MEblack, MEtan and MEgrey were identified 

Table 2 Results of GO and KEGG enrichment analysis for NRDEGs

GO Gene Ontology, BP Biological Process, CC Cellular Component, MF Molecular Function, KEGG Kyoto Encyclopedia of Genes and Genomes, NRDEGs Necroptosis-
Related Differentially Expressed Genes

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:0035521 monoubiquitinated histone deubiquitination 2/9 29/18800 8.22E-05 1.04E-02 6.76E-03

BP GO:0035522 monoubiquitinated histone H2A deubiquitination 2/9 29/18800 8.22E-05 1.04E-02 6.76E-03

BP GO:0035520 monoubiquitinated protein deubiquitination 2/9 34/18800 1.13E-04 1.04E-02 6.76E-03

BP GO:0016578 histone deubiquitination 2/9 40/18800 1.57E-04 1.09E-02 7.04E-03

BP GO:0001776 leukocyte homeostasis 2/9 89/18800 7.81E-04 4.31E-02 2.79E-02

CC GO:0000124 SAGA complex 1/9 21/19594 9.61E-03 8.14E-02 3.81E-02

CC GO:0031519 PcG protein complex 1/9 34/19594 1.55E-02 8.14E-02 3.81E-02

CC GO:0070461 SAGA-type complex 1/9 36/19594 1.64E-02 8.14E-02 3.81E-02

CC GO:0000123 histone acetyltransferase complex 1/9 87/19594 3.93E-02 8.14E-02 3.81E-02

CC GO:0071013 catalytic step 2 spliceosome 1/9 88/19594 3.97E-02 8.14E-02 3.81E-02

MF GO:0004712 protein serine/threonine/tyrosine kinase activity 3/9 446/18410 1.06E-03 1.65E-02 5.37E-03

MF GO:0004843 cysteine-type deubiquitinase activity 2/9 106/18410 1.15E-03 1.65E-02 5.37E-03

MF GO:0101005 deubiquitinase activity 2/9 113/18410 1.31E-03 1.65E-02 5.37E-03

MF GO:0019783 ubiquitin-like protein peptidase activity 2/9 124/18410 1.57E-03 1.65E-02 5.37E-03

MF GO:0008234 cysteine-type peptidase activity 2/9 178/18410 3.20E-03 2.69E-02 8.76E-03

KEGG hsa04062 Chemokine signaling pathway 2/2 192/8164 5.50E-04 2.70E-02 4.63E-03

KEGG hsa05216 Thyroid cancer 1/2 37/8164 9.04E-03 5.19E-02 8.91E-03

KEGG hsa05219 Bladder cancer 1/2 41/8164 1.00E-02 5.19E-02 8.91E-03

KEGG hsa05213 Endometrial cancer 1/2 58/8164 1.42E-02 5.19E-02 8.91E-03

KEGG hsa04657 IL-17 signaling pathway 1/2 94/8164 2.29E-02 5.19E-02 8.91E-03

(See figure on next page.)
Fig. 4 GO and KEGG enrichment analysis for NRDEGs. A. The GO and KEGG enrichment results of NRDEGs are shown in the histogram: biological 
processes (BP), cell components (CC), molecular functions (MF) and biological pathways (KEGG). The x-coordinate is GO terms and KEGG terms. 
B‑E. The results of GO and KEGG enrichment analysis of NRDEGs are shown in the network diagram: BP (B), CC (C), MF (D) and KEGG (E). NRDEGs, 
Necroptosis-Related Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological Process; 
CC, Cellular Component; MF, Molecular Function. Red nodes represent BP, CC, MF and KEGG entries; blue nodes represent molecules; lines represent 
relationships between entries and molecules. The GO and KEGG enrichment analysis screening criteria were adj. p-value < 0.05, FDR < 0.25 was 
considered statistically significant, and adj.p correction method Benjamini-Hochberg (BH)
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Fig. 4 (See legend on previous page.)
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by clustering tree (Fig. 7D) and visualized by hierarchical 
clustering (Fig. 7E).

Finally, the correlation between 16 modular genes and 
the N-score in the combined datasets was visualized 
(Fig.  7F). |r value|> 0.30 as the standard, five modules 
such as MElightcyan value (|r = 0.37|), MEsalmon value 
(|r = 0.46 |), MEpurple value (|r = 0.43|), MEbrown value 
(|r = 0.36 |) and MEtan value (|r = 0.45 |) were screened. 
A total of 9 NRDEGs were intersected with the genes 
included in the previous five modules, and only the 
modules with intersection genes were plotted as Venn 
diagrams (Fig. 7G). A total of 6 key module genes were 
obtained, namely PAWR, SYNCRIP, MERTK, CXCL5, 
STK38 and KRT86.  Interestingly, these three key mod-
ule genes (PAWR, MERTK, KRT86) are part of the model 
that calculates the N score.

Construction of protein–protein interaction network 
and analysis of key module genes
The STRING database was used for the PPI analy-
sis of six key module genes, and Cytoscape V3.9.0 was 

used for visualization (Fig.  8A). The key module genes 
(CXCL5 and MERTK) were selected from the PPI net-
work with interaction threshold scores ≥ 0.15. PAWR, 
SYNCRIP, MERTK, CXCL5, STK38 and KRT86 were 
highly statistically significant (p-value < 0.001) between 
PE and control groups in combined datasets by group-
ing comparison box plot (Fig. 8B). Then, the ROC curve 
results of the six key module genes in combined datasets 
were shown in Fig.  8C-D, which showed that PAWR, 
SYNCRIP, CXCL5 and STK38 showed a certain accu-
racy (0.7 < AUC < 0.9); MERTK and KRT86 showed low 
accuracy (0.5 < AUC < 0.7). Finally, the correlation circle 
diagram (Fig.  8E) was drawn based on the correlation 
of the entire expression matrix of the six key module 
genes, which showed the strongest positive correlations 
between PAWR and SYNCRIP and the strongest negative 
correlations between SYNCRIP and STK38.

Immune infiltration analysis of the preeclampsia dataset
The CIBERSORT algorithm analyzed the 22 categories 
of immune cells. The proportion bar chart revealed that 

Fig. 5 GSEA for combined datasets. A A total of 4 biological functions of GSEA in combined datasets were displayed by mountain map. B‑E. The 
GSEA revealed PE-associated DEGs significantly enriched in peptide hormone biosynthesis (B), apoptotic cleavage of cell adhesion proteins (C), 
apoptosis (D) and TNFR2 non-canonical NF-κB pathway (E). PE, Pre-eclampsia; GSEA, Gene Set Enrichment Analysis. The screening criteria for GSEA 
were adj.p-value < 0.05 and FDR < 0.25
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macrophages M2, monocytes, T cells follicular helper, 
NK cells resting and T cells CD4 memory resting showed 
a higher abundance of infiltration than other immune 
cells (Fig.  9A). Compared with the control group, the 
group comparison chart demonstrated that the infiltra-
tion abundance of monocytes, T cells follicular helper 
and T cells regulatory displayed a statistically significant 
decrease (Fig. 9B). The correlation heatmap showed that 
more immune cells correlate negatively with PE than a 
positive correlation (Fig.  9C). Using correlation heat-
maps, we investigated the relationship between immune 
cell infiltration abundance and key module genes in the 
PE datasets (Fig.  9D). According to the findings. neu-
trophils and monocytes showed a moderate positive 
correlation with CXC15 (r-value = 0.53, r value = 0.51) 

and displayed a moderate negative correlation with 
SYNCRIP (r-value = -0.52, r value = -0.50). In contrast, 
macrophages M2 showed a positive correlation with 
SYNCRIP (r-value = 0.53) and displayed a negative corre-
lation with CXC15 (r-value = -0.48).

Construction of preeclampsia‑related disease subtypes
We investigated key module gene expression variations 
in PE samples using combined datasets. Based on six key 
module genes’ expression, we identified two preeclamp-
sia-related disease subtypes by consensus clustering anal-
ysis using the R package "ConsensusClusterPlus" with 
cluster 1 containing 17 samples and cluster 2 containing 
43 samples. (Fig.  10A-C). Two subtypes showed signifi-
cant differences for three-dimensional PCA (Fig. 10D).

Table 3 Results of GSEA for combined datasets

GSEA Gene Set Enrichment Analysis

ID setSize enrichmentScore NES pvalue p.adjust qvalues

REACTOME_HORMONE_LIGAND_BINDING_RECEPTORS 12 9.12E-01 2.06E + 00 1.94E-03 3.42E-02 2.92E-02

REACTOME_LAMININ_INTERACTIONS 30 7.45E-01 2.05E + 00 2.06E-03 3.42E-02 2.92E-02

REACTOME_PEPTIDE_HORMONE_BIOSYNTHESIS 13 8.95E-01 2.05E + 00 1.97E-03 3.42E-02 2.92E-02

REACTOME_NON_INTEGRIN_MEMBRANE_ECM_INTERACTIONS 59 6.48E-01 2.02E + 00 2.27E-03 3.60E-02 3.07E-02

REACTOME_METABOLISM_OF_STEROID_HORMONES 29 7.30E-01 1.99E + 00 2.07E-03 3.42E-02 2.92E-02

NABA_BASEMENT_MEMBRANES 36 6.92E-01 1.98E + 00 2.13E-03 3.42E-02 2.92E-02

KEGG_STEROID_HORMONE_BIOSYNTHESIS 54 6.42E-01 1.96E + 00 2.26E-03 3.60E-02 3.07E-02

WP_PRADERWILLI_AND_ANGELMAN_SYNDROME 62 6.22E-01 1.94E + 00 2.31E-03 3.61E-02 3.09E-02

REACTOME_SMOOTH_MUSCLE_CONTRACTION 36 6.73E-01 1.93E + 00 2.13E-03 3.42E-02 2.92E-02

REACTOME_MET_ACTIVATES_PTK2_SIGNALING 30 6.97E-01 1.92E + 00 2.06E-03 3.42E-02 2.92E-02

WP_GLUCURONIDATION 25 7.18E-01 1.90E + 00 2.05E-03 3.42E-02 2.92E-02

WP_H19_ACTION_RBE2F1_SIGNALING_AND_CDKBETACATENIN_ACTIVITY 13 8.24E-01 1.89E + 00 1.97E-03 3.42E-02 2.92E-02

REACTOME_CELL_JUNCTION_ORGANIZATION 80 5.73E-01 1.89E + 00 2.40E-03 3.70E-02 3.16E-02

REACTOME_TIGHT_JUNCTION_INTERACTIONS 28 6.93E-01 1.89E + 00 2.09E-03 3.42E-02 2.92E-02

REACTOME_APOPTOTIC_CLEAVAGE_OF_CELL_ADHESION_PROTEINS 11 8.37E-01 1.88E + 00 1.88E-03 3.42E-02 2.92E-02

REACTOME_CELL_CELL_JUNCTION_ORGANIZATION 55 6.06E-01 1.86E + 00 2.28E-03 3.60E-02 3.07E-02

REACTOME_ATTACHMENT_AND_ENTRY 18 7.50E-01 1.85E + 00 2.02E-03 3.42E-02 2.92E-02

REACTOME_ANDROGEN_BIOSYNTHESIS 10 8.48E-01 1.84E + 00 1.88E-03 3.42E-02 2.92E-02

KEGG_APOPTOSIS 81 -5.02E-01 -1.59E + 00 3.41E-03 4.66E-02 3.98E-02

REACTOME_TNFR2_NON_CANONICAL_NF_KB_PATHWAY 95 -4.95E-01 -1.61E + 00 3.42E-03 4.66E-02 3.98E-02

(See figure on next page.)
Fig. 6 Diagnostic model of PE. A. Forest plot of a logistic regression model. The first column is the variable name, six NRDEGs invalid lines: one 
perpendicular to the X-axis, usually X = 1 or 0. The line segment is the analysis result of each included study, namely 95%CI. The shorter the line 
segment, the smaller 95%CI, the more accurate the result, and the greater the weight. The data corresponding to OR (95%CI) in the third column 
is the effective value and 95%CI of the aggregate results of each included study and meta-analysis. The fourth column was p-value, p-value < 0.5, 
indicating statistical significance. B‑C. Diagnostic model plots (B) and variable trajectories plots (C) of the LASSO regression model. D. Nomogram 
of 6 NRDEGs in LASSO regression model. Names of variables in the prediction model: 6 NRDEGs on the far left. Score: includes the score of a single 
item (Point in the figure), which represents the score of a single item corresponding to different values of each variable, and the Total score (Total 
Point), which represents the total score of a single item related to the value of all variables. Linear Predictor: Linear predictive value. Risk of PE: 
indicates the risk value probability of PE. E–F. A calibration curve (E) and DCA (F) of 6 NRDEGs in the PE diagnostic model. The ordinate is the net 
benefit, and the abscissa is the threshold probability. OR, odds ratio; PE, Pre-eclampsia; NRDEGs, Necroptosis-Related Differentially Expressed Genes; 
LASSO, Least Absolute Shrinkage and Selection Operator; DCA, Decision Curve Analysis
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To further verify the expression differences of key 
module genes in PE disease subtypes, the connection 
and difference between the key module genes’ expres-
sion levels and the two PE subtypes were investigated 

by boxplot(Fig.  10E). The boxplot results showed three 
key module genes were statistically significant, includ-
ing SYNCRIP and STK38 (p-value < 0.001) and KRT86 
(p-value < 0.01). Finally, to investigate the clinical benefits 

Fig. 6 (See legend on previous page.)
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of the three key module genes, we employed a ROC curve 
to investigate those values on differentiating PE subtypes 
(Fig.  10F-H). ROC curve showed that STK38 showed 
high accuracy (AUC > 0.9); SYNCRIP and KRT86 showed 
a sure accuracy (0.7 < AUC < 0.9).

Analysis of immune infiltration in preeclampsia disease 
subtypes
Based on the PE groups sample’s expression matrix in 
combined datasets, the abundance of 28 immunological 
cells’ infiltration in PE disease subtypes was calculated 

Fig.7 WGCNA for combined datasets. A‑B. Results of N Score between PE and control groups in combined datasets by group comparison boxplot 
(A) and ROC curve (B). C. Scale-free network display of the optimal soft threshold in WGCNA. The left graph displays the optimal soft threshold, 
while the right graph displays network connectivity with various soft thresholds. D. Module clustering results of genes with the top 25% variance. 
E. Clustering results for genes with the top 25% variance, the upper part was hierarchical clustering dendrogram, and the lower part was gene 
modules. F. Correlation analysis between cluster modules of genes with top 25% variation and N score. G. Venn diagram of 9 NRDEGs with 
MEbrown, MEpurple modules. N Score, Necroptosis Score; PE, Pre-eclampsia; ROC, Receiver Operating Characteristic; WGCNA, Weighted Gene 
Co-Expression Network Analysis; NRDEGs, Necroptosis-Related Differentially Expressed Genes. ***: p-value < 0.001. AUC has a certain accuracy at 
0.7–0.9. Red represents the PE group; blue represents the control group
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by the ssGSEA algorithm. Firstly, infiltrating abundance 
of immune cells with screening p-value < 0.05 in differ-
ent subtypes were shown by the group comparison box-
plot. The results revealed that the three immune cells had 
significant differences: among them, infiltration abun-
dance of Type 2  T helper cells was highly statistically 
significant among different subtypes of preeclampsia 

(p-value < 0.01); macrophage and regulatory T cells were 
statistically significant (p-value < 0.05) (Fig. 11A).

Subsequently, the association of the three immune 
cells’ infiltration abundance was analyzed in differ-
ent PE subtypes by correlation heatmap. As shown in 
Fig.  11B-C, the correlation between macrophage and 
Type 2 T helper cells was different between in subtype 

Fig. 8 PPI network, expression difference and correlation analysis. A. PPI network of key module genes. B‑E. Group comparison boxplot (B), ROC 
curve (C‑D), and correlation circle plot (E) of key module genes in combined datasets. PPI Network, Protein–protein Interaction Network; ROC, 
Receiver Operating Characteristic; PE, Pre-eclampsia. ***: p-value < 0.001. Pink represents the PE group, green represents the control group. AUC 
has low accuracy at 0.5–0.7 and certain accuracy at 0.7–0.9. Red denotes a positive correlation, whereas blue denotes a negative correlation. The 
connecting string represents the correlation between genes, and the wider the band and the darker the color, the larger the absolute value of the 
correlation coefficient. When the absolute r value is between 0.5 and 0.8, it is moderately correlated
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A (Cluster1) and subtype B (Cluster2). Finally, the cor-
relation between key modul e genes in the PE dataset 
and immunological cell infiltration abundance by cor-
relation heatmap (Fig.  11D-E). The results demon-
strated that subtypes A (Cluster1) and B (Cluster2) 
had similar correlations between immune cells and 
key module genes. Macrophages showed the strongest 

negative correlation with PAWR and the strongest pos-
itive correlation with CXCL5.

Discussion
Preeclampsia is a severe complication of pregnancy and 
the primary cause of maternal mortality worldwide, caus-
ing significant economic and psychological impacts on 

Fig.9 Combined datasets immune infiltration analysis by CIBERSORT algorithm. A. Proportion bar chart of immune cells infiltration analysis in 
combined datasets. B. Group comparison chart of Immune cells infiltration analysis in combined datasets. C. Correlation heatmap of immunocyte 
infiltration abundance for PE and control groups in combined datasets. D. Correlation heatmap between key module genes and immunocyte 
infiltration abundance for PE and control groups in combined datasets. PE, Pre-eclampsia. Green represents the control group; pink represents the 
PE group
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families due to associated fetal growth restriction, pre-
term birth, and other complications. Spiral artery remod-
eling disorder is an important pathological feature of PE. 
Recent research indicates a strong correlation between 
the necroptosis of trophoblast cells and spiral artery 
remodeling in the development of PE [43].

Necroptosis is a novel type of programmed cell death 
that has been extensively investigated for its diagnos-
tic and prognostic potential in various illnesses, such as 

ischemic cardiomyopathy [44], Stanford types A aor-
tic dissection [45], and cutaneous melanoma [46]. In 
recent years, growing researchers have actively mined 
and analyzed data from GEO or other databases to find 
potential molecular markers for PE diagnosis and treat-
ment. However, the role of necroptosis in PE remains 
to be elucidated, and studies of necroptosis combined 
with immune cell infiltration in PE are yet to be per-
formed. Therefore, further research is warranted to fully 

Fig. 10 Consensus clustering analysis for hub genes. A. Consistent clustering results in different disease subtypes of PE. B‑C. CDF plot (B) and 
Delta plot (C) in two disease subtypes of PE by consistency cluster analysis. D. 3D PCA map of two disease subtypes of PE. E–H. Group comparison 
boxplots (E) and ROC curves (F–H) of key module genes in PE disease subtypes. PE, Pre-eclampsia; CDF, Empirical Cumulative Distribution Function; 
PCA, Principal Component Analysis. Green represents Cluster1; pink represents Cluster2. **: p-value < 0.01; ***: p-value < 0.001. AUC has a certain 
accuracy between 0.7 and 0.9, while AUC has a high accuracy above 0.9
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Fig. 11 Consensus clustering immune infiltration analysis by ssGSEA Algorithm. A. Group comparison boxplot of immune cells in PE disease 
subtypes. B‑C. Correlation analysis’s results about immune cell infiltrate abundance in PE subtypes A (B) and B (C). D‑E. Heatmap of the correlation 
between immune cell infiltration abundance and key module genes in PE subtypes A (D) and B (E). ssGSEA, single-sample Gene-Set Enrichment 
Analysis; PE, Pre-eclampsia. Green represents Cluster1; pink represents Cluster2. *: p-value < 0.05; **: p-value < 0.01. Blue denotes a negative 
correlation, whereas red denotes a positive correlation
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elucidate the potential implications of necroptosis in PE 
pathophysiology.

Our study provides compelling evidence of the involve-
ment of necroptosis and immune cell infiltration in the 
pathogenesis of PE. Specifically, we identified alterations 
in the expression of 9 NRDEGs, including BRAF, PAWR, 
USP22, SYNCRIP, KRT86, MERTK, BAP1, CXCL5, and 
STK38. Furthermore, GSEA revealed the activation of 
several necroptosis pathways. We then constructed a 
LASSO regression model using six NRDEGs, which dem-
onstrated excellent diagnostic efficacy as reflected by 
ROC and DCA analyses. Additionally, we identified two 
distinct subtypes of PE, Cluster1 and Cluster2, based on 
the expression of key module genes. Among these genes, 
SYNCRIP, STK38, and KRT86 exhibited significant dif-
ferences across the subtypes and displayed good diagnos-
tic accuracy (AUC > 0.7). Remarkably, we also observed 
significant differences in the abundance of immune cells 
between the PE and control groups, as well as across both 
PE subtypes. Neutrophils and monocytes were strongly 
positively correlated with CXC15 but negatively corre-
lated with SYNCRIP, while macrophages M2 displayed 
the opposite correlation with the two key module genes. 
PAWR exhibited the strongest negative correlation with 
macrophages, while CXCL5 was positively associated 
with macrophages in PE subtypes. To the best of our 
knowledge, this bioinformatics analysis is the first to 
demonstrate the involvement of necroptosis and immune 
infiltration in the pathogenesis of PE.

In this study, we intersected 175 DEGs (90 downregu-
lated and 85 upregulated) acquired from combined data-
bases with 623 NRGs identified from the GeneCards 
database and MSigDB. Then we screened 9 NRDEGs, 
including BRAF, PAWR, USP22, SYNCRIP, KRT86, 
MERTK, BAP1, CXCL5, and STK38. Among these 
NRDEGs, USP22 is involved in remodeling spiral arter-
ies in the mouse placenta through multiple regulations, 
which affects the development of embryos [47], sug-
gesting that the abnormal expression of USP22 might 
be involved in PE. The result supports the findings of 
our bioinformatic analysis. Subsequently, the enrich-
ment study showed that NRDEGs were mainly engaged 
in immune-inflammatory response pathways, including 
chemokine signaling pathway, peptide hormone biosyn-
thesis, apoptotic cleavage of cell adhesion, apoptosis, 
TNFR2 non-canonical NF-κB pathway, IL-17 signaling 
pathway, and trip mediated programmed cell death, etc.

A previous study showed that chemokines play a cru-
cial role in the maternal–fetal interface during early preg-
nancy [48]. Expression of the chemokine receptor D6 is 
increased in PE trophoblast cells, but its functionality is 
reduced [49]. Additionally, the levels of IL-17 in serum 

and placental tissues of PE patients are increased [50]. 
High levels of IL-17 activate microvascular endothelial 
cells, cause a neutrophil inflammatory response, promote 
the increase of CXCL1 and CXCL2, and cause an exces-
sive inflammatory response in PE patients [51]. These 
studies provide supporting the validity of the current 
study. In summary, our functional annotation and path-
way enrichment analyses suggest that necroptosis and 
immunological inflammatory play a crucial role in the 
pathogenesis of PE.

The LASSO regression model was constructed, includ-
ing 6 NRDEGs, namely BAP1, BRAF, KRT86, MERTK, 
PAWR, and USP22. This diagnostic model had good 
clinical utility by the calibration curve and DCA. BRAF 
and PAWR contributed more to the model than the other 
four genes by nomogram. In addition, six NRDEGs from 
the diagnostic model were used to calculate the N Score 
by ssGSEA. The ROC curve’s AUC value indicated good 
effectiveness and predictability. By identifying NRDEGs 
in diagnostic model, our study provides a valuable start-
ing point for further research in this area.

A total of 5 key gene modules, including MElight-
cyan, MEsalmon, MEpurple, MEbrown, and MEtan were 
screened out by correlation screening between WGCNA 
and N Score, and further intersecting the genes contained 
in these modules with 9 NRDEGs, six essential module 
genes (PAWR, SYNCRIP, MERTK, CXCL5, STK38, and 
KRT86) were obtained, which expression showed signifi-
cant differences between PE and controls in combined 
datasets, the ROC curves of PAWR, SYNCRIP, CXCL5, 
and STK38 had higher AUC values in combined datasets. 
Finally, PE disease subtypes were identified using consen-
sus clustering analysis based on the expression of six key 
module genes in PE samples. Two distinct disease sub-
types were identified: subtype A (Cluster1 consisted of 17 
samples) and subtype B (Cluster2 encompassed 43 sam-
ples). The expressions of SYNCRIP, STK38, and KRT86 in 
both subtypes of PE were significantly different, and their 
diagnostic accuracy among subtypes was relatively high 
(AUC > 0.7). Interestingly, the difference between the two 
PE subtypes is similar to that between PE and controls, 
apart from the MERTK gene. Especially for the genes in 
cluster 2, their expression patterns were similar to those 
in the control group. These interesting gene expression 
patterns suggest that different subtypes of PE may have 
differences in pathogenesis and pathophysiology. Similar 
to our clinical difference between early-onset and late-
onset PE, subtype B tends to be hypertension induced by 
other diseases in the late trimester rather than placental 
dysfunction in the early trimester. In future studies, we 
need to explore further the expression patterns of these 
genes and their relationship between EOPE and LOPE.
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These results suggest that five NRDEGs (PAWR, 
BRAF, SYNCRIP, CXCL5 and STK38) might be PE and 
PE subtypes diagnostic biomarkers. The CXCL family 
and related pathways, such as CXCL15, have also been 
demonstrated to play significant roles in PE [52], GDM 
[53], and RSA [54]. Furthermore, studies have shown 
that BRAF is essential for ERK activation and, embry-
onic development, placental vascular development [55]. 
Moreover, Wang et  al. found that immunodeficiency 
caused by abnormal expression of BRAF, through the 
potential ceRNA network, regulates IL-10, TNF-α, 
IFN-γ and IL-10 levels downstream and participates in 
the pathophysiological of complicated pregnancy symp-
toms [56]. These are in accordance with the findings of 
this study. This research is the first to use PE-related 
NRDEGs to construct PE models of diagnostic and dis-
ease subtypes. However, we acknowledge that placental 
bed biopsy is not feasible during pregnancy. Our pro-
posed diagnostic tool based on PE-related NRDEGs 
expression analysis must be further validated and refined 
before implementing it in clinical practice. This potential 
diagnostic study can serve as a starting point for develop-
ing more practical and non-invasive diagnostic analyses. 
In addition, this approach may provide insight into the 
underlying mechanisms of PE, which may facilitate the 
development of new treatment strategies.

In recent decades, growing evidence of immuno-
logical dysregulation in PE has emerged. For example, 
CD4 + memory T cell activation decreases [57], and 
the dysfunction of regulatory T cells affects the sys-
temic immune responses [58]. However, the immune 
cell activation pattern in PE remains uncertain. We 
applied CIBERSORT to assess the immune infiltration 
comprehensively to identify the function of immune 
cell infiltration in PE. The score of most immune 
cells was lower in PE, and the findings were consist-
ent with previous studies [59]. We discovered signifi-
cant differences in the infiltration of monocytes, T 
cells follicular helper and regulatory T cells between 
PE and control groups. The infiltration of type 2  T 
helper cells, macrophages, and regulatory T cells was 
significantly different between cluster 1 and cluster 
2. Macrophages and T cells are critical in regulat-
ing the immune system’s equilibrium [60, 61]. These 
results further confirm that immune cell infiltration 
is significant for the pathogenesis and classification 
of PE. Necroptosis has been reported to regulate 
immune system components [62]. Thus, we examined 
the relationship between NRDEGs and the infiltra-
tion of immune cells in PE. We discovered that some 
NRDEGs had a moderate correlation with immune 
cells. Specifically, neutrophils and monocytes showed 
a moderate positive correlation with CXC15 and a 

moderate negative correlation with SYNCRIP. How-
ever, macrophages M2 showed an opposite correla-
tion with the two key module genes in PE datasets. 
Additionally, further analysis shows that macrophage 
has the strongest negative correlation with PAWR 
and the strongest positive correlation with CXCL5 in 
both PE subtypes. These findings showed a moderate 
relationship between immune cell infiltrations and 
necroptosis, suggesting that necroptosis may promote 
the onset of PE by triggering immune infiltration and 
immunological response.

Our research has several areas for improvement. First, 
although we performed a thorough bioinformatics anal-
ysis in the present research, our findings still require 
cautious evaluation due to the lack of support from our 
experiments and clinical studies. Second, the large num-
ber of datasets might result in inevitable and removed 
batch differences during analysis. Third, different fea-
ture selection methods may produce different results, 
and this analysis focuses on the key module genes with 
the strongest correlation with the N score. However, the 
genes constituting the regression models are also valu-
able and will be considered in future studies to explore 
whether possible target genes influence the development 
and progression of PE.

 Conclusions
Our bioinformatics investigation revealed substantial dif-
ferences in the NRDEGs’ expression levels between con-
trol and PE placenta samples. Moreover, we discovered a 
relationship between the NRDEGs’ expression and sev-
eral immune cells’ infiltration in PE. The immunological 
and necroptosis-related factors found through our analy-
sis may provide light on the pathophysiology of PE.
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