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Abstract 

Background Improving the accuracy of estimated fetal weight (EFW) calculation can contribute to decision-making 
for obstetricians and decrease perinatal complications. This study aimed to develop a deep neural network (DNN) 
model for EFW based on obstetric electronic health records.

Methods This study retrospectively analyzed the electronic health records of pregnant women with live births 
delivery at the obstetrics department of International Peace Maternity & Child Health Hospital between January 2016 
and December 2018. The DNN model was evaluated using Hadlock’s formula and multiple linear regression.

Results A total of 34824 live births (23922 primiparas) from 49896 pregnant women were analyzed. The root-
mean-square error of DNN model was 189.64 g (95% CI 187.95 g—191.16 g), and the mean absolute percentage 
error was 5.79% (95%CI: 5.70%—5.81%), significantly lower compared to Hadlock’s formula (240.36 g and 6.46%, 
respectively). By combining with previously unreported factors, such as birth weight of prior pregnancies, a con-
cise and effective DNN model was built based on only 10 parameters. Accuracy rate of a new model increased 
from 76.08% to 83.87%, with root-mean-square error of only 243.80 g.

Conclusions Proposed DNN model for EFW calculation is more accurate than previous approaches in this area 
and be adopted for better decision making related to fetal monitoring.
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Background
The assessment of intrauterine fetal growth and devel-
opment is an important issue in perinatal care. Esti-
mated fetal weight (EFW) is a determinant of both 
maternal and fetal safety during pregnancy and deliv-
ery [1]. In the small-for-gestational-age (SGA) fetuses, 
EFW is an indicator of intrauterine growth retarda-
tion (IUGR) status and can determine delivery timing 
[2]. The EFW in the large-for-gestational-age (LGA) 
fetuses can potentially identify fetus macrosomia, 
which can lead to severe perinatal complications such 
as prolonged labor, fetal distress, shoulder dystocia 
and postpartum hemorrhage [1, 3]. Therefore, accu-
rate EFW estimation before delivery is critical for 
determining the necessity of caesarean section and 
minimizing the risk of perinatal complications and 
mortality [4].

Although maternal anthropometrics based on the 
fundal height are easy to measure, this method can lead 
to a huge margin of error for the EFW [1], making EFW 
prediction unreliable. With widespread ultrasound 
(US) examination during various stages of pregnancy, 
formulae based on US measurements became the most 
widely used method of EFW [5]. The formulae derived 
from regression models using various combinations of 
US parameters, such as Hadlock’s formula [6] and War-
sof ’s formula [7], were well established but still have 
6.5–8% mean absolute percentage error (MAPE) [8]. 
Although formulae based on fetal thigh or upper arm 
volume measurements through 3-D US [9] and mag-
netic resonance echo-planar imaging [10] can predict 
EFW with higher accuracy, these approaches are time-
consuming, expensive and technically challenging.

Artificial neural network (ANN) is a computational 
analog of a biologic neural system. ANN is a non-linear, 
self-learning system composed of numerous independ-
ent processing units [11], and can therefore process a 
large amount of data simultaneously [12]. In recent 
years, deep neural network (DNN) models made sig-
nificant achievements in numerous computational 
biology and medicine problems [13, 14]. In addition, 
several research groups have utilized ANN to construct 
prediction models for EFW. Farmer et al. first used the 
neural network method to obtain EFW of LGA fetus, 
and predicted the EFW of 100 potential LGA fetuses 
with a MAPE of 4.7% compared to 10% achieved by 
conventional methods [15]. Chuang et  al. devised an 
ANN model for estimating birth weight, which demon-
strated a MAPE of only 6.15% as opposed to 7.5% by 
the conventional approach [16]. These methods do not 
require an empirical formula, and can easily adapt to 
more parameters that are potentially related to EFW. 

However, no prediction model has so far been used in 
clinical practice.

Therefore, this study aims to develop a clinically appli-
cable model for EFW prediction based on DNN.

Methods
Study design and population
This study retrospectively analyzed the electronic health 
records of pregnant women with live births delivery at 
the obstetrics department of International Peace Mater-
nity & Child Health Hospital between January 2016 and 
December 2018.

The inclusion criteria were as follows: pregnancy, 
age 18–49  years, gestational week 28–41 + 6  weeks, US 
examination within 14 days before delivery. We excluded 
the features with too much missing data (more than 20% 
missing data), coefficient of variation (C.V%) < 2%, or 
difficult to calculate (such as multicategorical features). 
The remaining 42 parameters were included for further 
analysis and screening. Cases of anomalous fetuses, with 
more than 20% missing data, or with illogical values for 
the US parameters were excluded. For cases with < 20% 
missing values rate, the missing values and illogical val-
ues were input via K-nearest neighbor (KNN) imputation 
of sklearn [17] (k = 5 by default) (Fig. 1A).

This study was approved by the Medical Ethical Com-
mittee of International Peace Maternity and Child Health 
Hospital, School of Medicine, Shanghai Jiao Tong Uni-
versity (No. GKLW2020-01). This study have obtained 
both informed consent and ethics committee approval 
for studies on patient records. The unified ID of unknown 
personal information was used to protect the privacy of 
the patients.

Data collection
A dataset of 42 obstetric features was constructed, of 
which 10 features were available at the initiation of preg-
nancy, 16 were obtained during the pregnancy and 16 
from the last US examination records. The initial obstet-
ric features included demographics (e.g. age, parity, 
gravidity), basic measures (e.g. weight and height), and 
medical history of the current pregnancy (e.g. previous 
neonatal weight, IVF etc.). The features gathered during 
pregnancy included blood laboratory tests (e.g. OGTT, 
triglyceride, cholesterol), anthropometrics measure-
ments (e.g. fundal height, weight gain) and BP measure-
ments. All data were collected during antenatal visits or 
admission prior to delivery, and there was no selection 
bias. US examination records was based on a standard US 
template, which have amniotic fluid depth of 4 quadrant 
and a total AFI, abdominal transverse diameter, abdomi-
nal anteroposterior diameter, but no abdominal circum-
ference. All features and their mean values are listed in 
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Fig. 1 The flow chart of cohort selection, feature distribution and Deep Neural Network (DNN) model. A Cohort selection. Pregnancies were 
first identified by offspring birth date. Cases with anomalous fetuses, multifetal gestations and without Ultrasound examination within 2 weeks 
before delivery were excluded. Finally, the cohort was divided into training and validation sets (see Methods). B DNN model. C Feature availability 
distribution. Pie charts are divided according to the sum of features in each feature set
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Fig. 1c, and the percentage of feature availability per cat-
egory is shown in Fig. 1B.

Statistical analyses
Statistical analyses were performed with Python 3.7.2 
scikit-learn 0.21.3, Keras 2.2.5, Shap 0.35.0, IBM SPSS 25 
for mac (IBM Corp, Armonk, NY) and R 4.0.0.

DNN model building
The DNN model was built via Tensorflow 1.13.1. It con-
sisted of the input layer (all input features), the output 
layer (EFW) and several hidden layers between them. 
Every two adjacent layers were fully connected. The 
number of layers and nodes in the hidden layers were 
determined according to the average results from five-
fold cross-validation (Fig. 2), which had 3 hidden layers 
with 30 nodes per layer. Considering that the input fea-
ture space has been limited with no salient prior knowl-
edge to be abstracted, convolution layers were not used 
before the fully connected layers of the DNN. In order to 
avoid the cumulative effect of uneven distribution and to 
increase the network converge, batch normalization was 
used between every two layers.

Except for the output layer, the excitation functions 
between each pair of layers were ELU [1, 18]:

(1)ELU(x) = {xα(ex−1)

if x > 0

if x < 0

The loss function (cost) is mainly based on the mean-
square error (MSE), supplemented with the L1 and L2 
regularization coefficients (λ = 0.0001) of the weights of 
each layer to avoid model overfitting.

DNN model training
The back propagation network algorithm was used as 
the learning algorithm to train the DNN, The Adadelta 
algorithm provides an adaptive learning rate as a train-
ing optimizer [19]. The number of training epochs is 
also adaptive. The loss of the training dataset was calcu-
lated at each epoch, and if the  lossi of the training set in 
1000 consecutive epochs was greater than the minimum 
loss of the verification set  (lossmin), the iteration process 
was terminated, and the network with the smallest loss 
was selected as the final model. The robustness of the 
machine learning model was validated by the fivefold 
cross and dropout methods. Before training, the remain-
ing data was randomly divided into 5 groups, with one 
group as the validation dataset, and the remaining 4 com-
binations as the training set. A dropout (fraction = 0.2) 
step between layers was used to prevent overfitting and 
increase the generalization of the model. The flow chart 
for the development of DNN model is shown in Fig. 1B.

Model interpretations
The contribution of individual features to the model 
output was determined in terms of Shapley values [20] 
and their related extensions using the SHAP (SHapley 

Fig. 2 The change in Root Mean Square Error (RMSE) across different layers and nodes during pre-training. The size and the color of the bubbles 
both show RMSE
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Additive exPlanations) package [21], which partitioned 
the prediction result of every sample into the contribu-
tion of each constituent feature value. The average SHAP 
values of each feature across all samples were calculated 
to estimate the individual contributions.

Feature selections
Feature selection was performed to reduce the data 
dimension (avoiding potential overfitting) as much as 
possible without affecting the accuracy of training, and 
obtain a small panel of features while ensuring the gen-
eralization and adaptability of the training results. The 
model-free Greedy (MFG) algorithm was used since 
it does not rely on a specific model and can intuitively 
select a set of features with the highest estimation/classi-
fication efficiency [22]. Since the MFG approach depends 
on various correlations, it has performed optimally in 
previous machine learning applications [22].

Methods comparison
The performance of the DNN model was evaluated using 
Hadlock’s formula and multiple linear regression (MLR) 
as the reference. The EFW was calculated by Hadlock’s 
formula using US parameters. For the MLR model, the 
research parameters were screened in a step-by-step 
manner, and those with p < 0.05 were included and those 
with p > 0.1 were excluded. The confidence interval of 
MAE, MAPE and RMSE were calculated by SPSS.

The evaluation methods of different models
(1) Mean percentage error (MPE): percentage of the error 
between the EFW and the actual birth weight of each 
individual was calculated, with following calculation 
of the mean value and its standard deviation. (2) Mean 
absolute percentage error (MAPE): percentage of the 
error between the EFW and the actual birth weight was 
calculated, after that the absolute value was taken to cal-
culate the average value and standard deviation. (3) Mean 
absolute error (MAE): absolute error between the EFW 
and the actual birth weight was directly calculated and 
then averaged.

(4) Root mean square error (RMSE): the standard devi-
ation of the error between the EFW and the actual birth 
weight, as commonly used in regression analysis. (5) Pre-
diction accuracy rate: the accuracy was defined as the 
predictions error < 10% of actual birth weight. According 
to the traditional standard of obstetrics, the difference 
between the predicted weight and the actual birth weight 
less than 250 g is regarded as an accurate prediction, and 
the accuracy rate is calculated by dividing the accurately 
predicted sample by the population.

Results
A total of 34814 live births (23922 primiparas and 11422 
multiparas) from 49896 pregnant women were analyzed 
(Fig. 1A). The majority (97%) of pregnant women were of 
Han Chinese ethnicity. The MLR and DNN models were 
first constructed using all 39 features (Fig.  1B-C; Table 
S1). The models were then pre-trained and the optimal 
number of layers and the number of nodes in each layer 
were obtained by cross-validation. The changes in the 
RMSE of each network during pre-training are shown in 
Fig. 2 and Table S2. The final selected network consisted 
of 3 hidden layers with 30 nodes per layer, which has least 
RMSE.

The MAE, MAPE and RMSE of the EFW on the vali-
dation dataset were calculated by Hadlock’s formula, 
MLR model and DNN model. The DNN model achieved 
MAE of 189.64  g (95% CI 187.95  g—191.16  g) com-
pared to 214.95  g (95% CI 213.48  g—217.10  g) by the 
Hadlock’s formula. In addition, the MAPE of the DNN 
model was only 5.79% (95% CI 5.70%—5.81%) compared 
to 6.46% (95% CI 6.41%—6.52%) achieved by Hadlock’s 
formula. Finally, the RMSE achieved by DNN and Had-
lock’s method were 240.36 g (95% CI 238.24 g—242.31 g) 
and 271.35  g (95% CI 269.69  g—274.15  g) respectively 
(Fig. 3 A-D, Table S3). Accordingly, the accuracy rate of 
EFW increased from 76.08% with the Hadlock’s formula 
to 83.87% using the DNN model, corresponding to an 
increment of 7.79% (Table S3). There were also signifi-
cant differences between the DNN model and the MLR 
method (Table S3). Furthermore, the frequency of sam-
ples with large deviation (> 500 g) was only 3.95% in the 
DNN model compared to 6.45% with the Hadlock’s for-
mula, indicating that the DNN model can significantly 
reduce estimated errors (Fig. 4). The predictive accuracy 
of DNN was also tested on primiparas and multiparas 
(previous neonates data available). As shown in Fig. 5, the 
DNN model had lower mean deviation, MAE, MAPE and 
RMSE compared to the Hadlock’s formula in both sub-
groups, and the predictive performance of DNN was bet-
ter for the multiparas group.

Deep LIFT analysis showed that apart from the US 
data, the most predictive feature for EFW was pre-
pregnancy maternal weight (kg), followed by the 
maternal OGTT 2H and BMI (Fig.  6A). In the mul-
tiparas group, the most predictive feature for EFW 
was OGTT 2H, followed by mean birth weight of pre-
vious babies (g) and pre-pregnancy maternal weight 
(Fig.  6B). As shown in Table S4, we selected 10 fea-
tures, of which 6 were US data. The simpler model 
was trained on the entire data set and achieved MAE 
of 192.21  g (95% CI 190.54—193.87), MAPE of 5.81% 
(95% CI 5.75%—5.86%) and RMSE of 243.80  g (95% 
CI 241.66—245.91), all of which were superior to that 
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of Hadlock’s formula (Fig.  7, Table S5). To further 
evaluate its performance in the multiparas group, we 
added the previous neonatal birth weight feature. As 
expected, the concise DNN model performed better 

for multiparas cases, thus confirming that inclusion 
of previous neonatal birth weight improves the accu-
racy of EFW (Fig.  7, Table S6). Finally, we evaluated 
the ability of the DNN model after feature selection 

Fig. 3 The performance of different methods for estimated fetal weight (EFW). The mean deviation (± 1 SD). A mean absolute error (MAE), (B) mean 
absolute percentage error (MAPE), (C) and root-mean-square error (RMSE), (D) and their 95% confidence interval of EFW in different methods

Fig. 4 The frequency distribution of the estimated error of the Deep Neural Network (DNN) model and the Hadlock’s formula in the calculation 
of estimated fetal weight
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to predict macrosomia (neonatal weight > 4000  g). 
The DNN model achieved an AUROC of 0.918 and 
area under the precision-recall curve (AUPR) of 0.466, 
compared to 0.895 and 0.407 respectively by the Had-
lock’s formula (Fig. 8, Table S7).

Discussion
Main findings
This study showed that the root-mean-square error, 
as well as the mean absolute percentage error of DNN 
model were significantly lower compared to Hadlock’s 

Fig. 5 The performance of different methods in the primiparas and multiparas groups. The mean deviation (± 1 SD) (A) mean absolute error (MAE), 
(B) mean absolute percentage error (MAPE), (C) and root-mean-square error (RMSE), (D) and their 95% confidence interval of the estimated fetal 
weight (EFW) in the primiparas and multiparas groups compare to the entire cohort

Fig. 6 Feature impact of all contributing features. A The entire data model. B Multiparas model. Bar colors indicate direction of influence based 
on the correlation coefficient of a feature
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formula. After considering previously unreported fac-
tors, such as birth weight of previous babies, new 
concise and effective DNN model was proposed, with 
accuracy rate increased from 76.08% to 83.87% and 
root-mean-square error of only 3.44 g. Taken together, 
proposed prediction model was more accurate com-
pared to both Hadlock’s method and MLR in predicting 

the EFW and therefore have a potential for aiding deci-
sion making in fetal development monitoring.

Strengths and limitations
In recent years several EFW prediction models have been 
developed, but none of these models were practiced in 
routine clinical applications or recommended according 

Fig. 7 A-D The performance of models after feature selection in the primiparas and multiparas groups and the entire cohort. The mean deviation 
(± 1 SD), (A) mean absolute error (MAE), (B) mean absolute percentage error (MAPE), (C) and root-mean-square error (RMSE), (D) and their 
95% confidence interval of the EFW of multiparas group and the entire cohort after model-free Greedy (MFG) algorythm feature selection 
versus Hadlock’s formula and the all features model

Fig. 8 The receiver operating characteristic (ROC) and precision-recall curve (PR) curve of Deep Neural Network (DNN) model after feature selection 
versus Hadlock’s formula on macrosomia prediction. A ROC curve. B PR curve
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to the current guidelines. Hadlock’s formula is still thus 
far one of the best-established weight estimation formu-
las and the one most widely used in everyday routine 
work, despite recent studies indicating potential ways to 
decrease MAPE, the especially in macrosomic fetuses 
and other deviant cases [8, 23]. Although, due to the dras-
tic difference in the number of participants, the MAPE 
in this study was slightly higher than that calculated by 
Konwar [8] or Weiss [23] (5.79% for DNN estimation and 
6.46% for Hadlock’s formula), the DNN model still pre-
dicted the EFW more accurately compared to the Had-
lock’s formula. Moreover, the frequency of samples with 
large deviation (> 500  g) was also significantly smaller 
compared to Hadlock’s formula, indicating that the DNN 
model can reduce large estimated errors.

One of the major issues regarding EFW is fetal devel-
opment monitoring, and the currently used Hadlock’s 
formula have previously demonstrated notably worse 
performance in SGA and LGA groups [3, 23]. Based on 
the auROC values, we propose that the 10-feature DNN 
model can make 1006 more accurate weight predictions 
and 189 fewer missed diagnosis of macrosomic babies at 
our hospital, suggesting it can help doctors make more 
reasonable decisions regarding the necessity of caesarean 
sections, which might reduce shoulder dystocia [24]. Our 
results suggest that the DNN prediction model can track 
fetal weight easily and accurately during pregnancy and 
find SGA/LGA fetus earlier, which can help determining 
whether intervention is necessary.

Other than well-known parameters of EFW such 
as US data and maternal weight gain, our selection 
method revealed predictive factors that were not previ-
ously reported, especially in the multiparas group. The 
main newly identified parameters were main and maxi-
mum birth weight of previous pregnancies in multiparas 
group. While women with a history of fetal macrosomia 
and SGA in previous pregnancies were shown to possess 
the increased risk of the same in their current pregnancy 
[25–27], we found that the birth weight of previous 
babies was notably more predictive of EFW than previ-
ously reported. Although maximal prediction accuracy 
requires the entire EHR, we demonstrated that 10 fea-
tures selected by the MFG method, which can be easily 
collected by questionnaires and physical examinations, 
can still achieve accurate prediction. This also presents 
the possibility of accurate EFW via web- or smartphone-
based self-assessment tools due to its light computational 
complexity.

There are several limitations in our study that ought to 
be considered. Firstly, our prediction model was based 
on retrospective EHR data of one center that have inher-
ent biases and were influenced by patients’ interactions. 
However, these biases were reduced to an extent since 

the outcome of the model was based on routine preg-
nancy tests that were comprehensively documented in 
the EHRs. Secondly, we were not able to continuously 
train the model with more data. Although our hospital 
is one of the three major maternity hospitals in Shang-
hai, serving more than 10,000 pregnant women all over 
Shanghai and surrounding areas every year. We agree 
that the dataset may still not represent the population of 
pregnant women in other regions, especially for women 
outside of Shanghai. Larger cohorts and multi-center val-
idation are needed to further decrease the biases. Thirdly, 
we only had one doctor to access the US measurements, 
which were not validated by a second independent inves-
tigator. Fourthly, although we use the interval between 
US examination and delivery as a feature to adjust the 
EFW model, the fetal growth during the last few days 
can still lead to large random errors. Further studies 
are needed that regulate the interval between US exam 
and delivery to improve the predicting accuracy. Fifthly, 
the majority of pregnant women in our hospital did not 
undergo 3D ultrasound or MR examinations. So we were 
unable to compare DNN model based on US with mod-
els based on other examinations such as 3D-US or MR. 
Finally, the EHR data in this study did not contain data on 
the thickness of subcutaneous fat, dietary habits, paternal 
contributions, and placental position, which were previ-
ously shown to be associated with fetal birth weight [26, 
28, 29]. Future prospective studies should address these 
parameters as well.

Interpretation
The report indicates that apart from the US data, the 
maternal features with the greatest impact on EFW were 
pre-pregnancy maternal weight, maternal OGTT2H, and 
BMI. According to previous studies, gestational diabe-
tes mellitus mothers are more likely to have overweight 
babies [30, 31]. Maternal obesity leads to multidirectional 
effects on fetal growth (low birth weight, fetal growth 
restriction, and macrosomia) [32]. It might be related to 
genetic factors [33] and metabolism status [32, 34] of the 
mother.

Multiparas have data of previous deliveries that can be 
used to optimize the model to predict subsequent birth 
weight. We found that adding data of previous deliver-
ies can predict the fetal weight of the current pregnancy 
more accurately. Genetic background may play a role. 
Previous reports have shown that mothers who previ-
ously delivered SGA or LGA neonates would increase the 
risk of delivered SGA or LGA neonates this time [26, 27].

The proposed prediction model was more accurate 
compared to both Hadlock’s method and MLR in pre-
dicting the EFW and therefore have a potential for aid-
ing decision making in fetal development monitoring. 
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Future prospective studies and large multi-center 
cohorts are needed to validate this findings and evalu-
ate the clinical impact of the DNN model. Also the 
study did not assess the generalizability of the DNN 
model to other populations, such as women with pre-
existing medical conditions or different ethnicities. 
Future research should focus on refining the machine 
learning models, investigate the performance of the 
DNN model in different populations, providing long-
term monitoring of EFW throughout pregnancy, and 
investigating those cases in which the model prediction 
was less accurate.

Conclusion
In conclusion, proposed prediction model was sig-
nificantly more accurate compared to both Hadlock’s 
method and MLR in predicting the EFW and therefore 
have a potential for aiding decision making in fetal devel-
opment monitoring. Future prospective studies and large 
multi-center cohorts are needed to validate these find-
ings and evaluate the clinical impact of the DNN model.
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