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Abstract 

Background  This study was to conduct prediction models based on parameters before and after the first cycle, 
respectively, to predict live births in women who received fresh or frozen in vitro fertilization (IVF) or intracytoplasmic 
sperm injection (ICSI) for the first time.

Methods  This retrospective cohort study population consisted of 1,857 women undergoing the IVF cycle from 2019 
to 2021 at Huizhou Municipal Central Hospital. The data between 2019 and 2020 were completely randomly divided 
into a training set and a validation set (8:2). The data from 2021 was used as the testing set, and the bootstrap valida-
tion was carried out by extracting 30% of the data for 200 times on the total data set. In the training set, variables 
are divided into those before the first cycle and after the first cycle. Then, predictive factors before the first cycle and 
after the first cycle were screened. Based on the predictive factors, four supervised machine learning algorithms were 
respectively considered to build the predictive models: logistic regression (LR), random forest (RF), extreme gradient 
boosting (XGBoost), and light gradient boosting machine (LGBM). The performances of the prediction models were 
evaluated by the area under the receiver operator characteristic curve (AUC), sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and accuracy.

Results  Totally, 851 women (45.83%) had a live birth. The LGBM model showed a robust performance in predicting 
live birth before the first cycle, with AUC being 0.678 [95% confidence interval (CI): 0.651 to 0.706] in the training set, 
0.612 (95% CI: 0.553 to 0.670) in the validation set, 0.634 (95% CI: 0.511 to 0.758) in the testing set, and 0.670 (95% CI: 
0.626 to 0.715) in the bootstrap validation. The AUC value in the training set, validation set, testing set, and bootstrap 
of LGBM to predict live birth after the first cycle was 0.841 (95% CI: 0.821 to 0.861), 0.816 (95% CI: 0.773 to 0.859), 0.835 
(95% CI: 0.743 to 0.926), and 0.839 (95% CI: 0.806 to 0.871), respectively.

Conclusion  The LGBM model based on the predictive factors before and after the first cycle for live birth in women 
showed a good predictive performance. Therefore, it may assist fertility specialists and patients to adjust the appropri-
ate treatment strategy.
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Background
Infertility is defined as the failure of husband and wife 
to get pregnant after 12 months of regular sexual inter-
course and without using any contraceptive method 
[1]. It is estimated that 8–12% of couples of reproduc-
tive ages worldwide face this problem, affecting family 
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well-being and social stability worldwide [2]. Thereby, 
the demand for in  vitro fertilization (IVF) and intra-
cytoplasmic sperm injection (ICSI) is increasing, 
with over 8 million babies born through IVF or other 
assisted reproductive technology treatments since the 
world’s first in 1978 [3]. Although the success rate of 
assisted reproductive technology increases with newer 
techniques, IVF does not guarantee success in fertili-
zation [4]. Considering the high financial burden and 
inconclusive health risk of IVF [5], it is necessary to 
explore the factors related to the live birth of women 
with IVF and construct prediction models to predict 
the live birth rate of IVF pregnant women for patients 
counseling and shaping expectations.

Previous studies have reported that age, duration of 
infertility, previous live birth, previous miscarriage, previ-
ous abortion, and type of infertility were associated with 
the IVF outcome [6, 7]. Using these parameters that can 
be obtained before the IVF cycle to evaluate live births 
may improve the treatment efficiency of assisted repro-
ductive technology and reduce the waste of resources. 
Moreover, assisted reproductive process-related factors, 
such as stimulation protocols, and number of embryos 
transferred were also found to be related to the outcome 
of assisted reproductive technology [8, 9]. The outcome 
prediction model based on the above post-cycle factors 
is conducive to doctor-patient communication and can 
help clinicians adjust assisted reproductive planning. 
The traditional prediction relies on the comprehensive 
evaluation of the doctor based on the age of the patient 
and the live birth rate of the reproductive center, which 
is highly subjective [4]. Up till now, reliable and accu-
rate prediction of IVF outcomes has always been an 
outstanding issue. Machine-learning algorithms have 
recently been used to predict IVF outcomes on the basis 
of multiple clinical variables [7]. A recent study reported 
that the predicted probability of live birth in IVF varies 
during important stages throughout the treatment [10]. 
However, few studies have established prediction mod-
els respectively before the first cycle and after the first 
cycle. Assessing outcomes before and after the first cycle 
is critical to provide individualized treatment for infertile 
patients. Moreover, previous prediction models for live 
birth were mostly based on fresh embryo transfer [11, 
12], but did not fully consider frozen embryo transfer. In 
view of the development of frozen embryo transfer, it is 
necessary to conduct prediction models to predict live 
births of based on the fresh and frozen embryo transfer.

Herein, the objective of the present study is to use 
machine learning methods to conduct prediction based 
on parameters before and after the first cycle, respec-
tively, to predict live births in women who received IVF 
for the first time.

Methods
Study design and population
In this retrospective cohort study, women undergoing 
IVF (including ICSI) at the Huizhou Municipal Cen-
tral Hospital from 2019 to 2021 were retrospectively 
reviewed. Infertile women with age between 20 and 
45 years who received IVF or ICSI for the first time were 
included in this study. The study was approved by the 
ethics committee of Huizhou Municipal Central Hospi-
tal (ky112022001). Patient informed consent was waived 
for this retrospective study by the ethics committee of 
Huizhou Municipal Central Hospital. All methods were 
carried out in accordance with relevant guidelines and 
regulations (Declaration of Helsinki).

Data collection
Data were collected from the case report form (CRF), 
including (1) demographic data: maternal age (years), 
maternal body mass index (BMI, kg/m2); (2) before the 
first cycle: causes of infertility (man, women, both, and 
unknown), the number of pregnancies, the number of 
deliveries, the number of miscarriages, type of infertil-
ity (primary infertility and secondary infertility), infer-
tility duration (years), the number of left sinus follicles 
(< = 7 or > 7), the number of right sinus follicles (< = 7 
or > 7), basal follicle-stimulating hormone (FSH, mIU/
ml), basal luteinizing hormone (LH, mIU/ml), basal pro-
lactin (PRL, ng/ml), basal serum estradiol (E2, pg/ml), 
basal progesterone (P, ng/ml), anti-mullerian hormone 
(AMH, ng/ml); (3) after the first cycle: method of ferti-
lizations (IVF or ICSI), type of embryos (fresh embryos 
and frozen embryos), gonadotropin (Gn, IU), duration 
of Gn (days), human chorionic gonadotropin (HCG, IU/
ml), LH level on HCG day (mIU/ml), E2 level on HCG 
day (pg/ml), endometrial thickness (EMT) on HCG 
day (mm), P on HCG day (ng/ml), types of transferred 
embryos (blastocyst and cleavage embryo), the number 
of embryos transferred, the number of cleavage embryos 
transferred, stimulation protocols (long protocol, antago-
nist protocol, and other protocol), luteal phase support 
(cyclogest + dydrogesterone, progesterone administered 
intramuscularly, crinon + dydrogesterone), and endome-
trial preparation protocol (ovulation induction protocol 
cycles, natural cycles, hormone replacement treatment 
cycles, and no).

Primary infertility referred to the infertility of couples 
who have never been pregnant, while secondary infertil-
ity referred to the failure to get pregnant after the pre-
vious pregnancy. The long protocol included prolonged 
protocol, long protocol in the follicular phase, and long-
acting long protocol; other protocols included mild stim-
ulation protocol, progestin-primed ovarian stimulation 
(PPOS), and other ovulation stimulation protocol.
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Outcome
The primary outcome of this study was a live birth rate, 
described as the delivery of at least one live baby at or 
after 24 weeks gestation.

Prediction models constructions and evaluations
The data between 2019 and 2020 were completely ran-
domly divided into a training set (80% of the total num-
ber) and a validation set (20%). The data of 2021 was 
used as the testing set, and the bootstrap validation was 
carried out by extracting 30% of the data for 200 times 
on the total data set. In the training set, variables were 
divided into those before the first cycle and after the first 
cycle. Then, predictive factors before the first cycle and 
after the first cycle were screened based on the data in 
the training set. Based on the predictive factors, four 
supervised machine learning algorithms were respec-
tively considered to build the prediction models: logistic 
regression (LR), random forest (RF), extreme gradient 
boosting (XGBoost), and light gradient boosting machine 
(LGBM). LR is a common supervised classification algo-
rithm with a nice probabilistic interpretation [7]. The RF 
is a non-parametric, nonlinear statistical machine-learn-
ing approach that combines a set of decision trees into an 
’ensemble’ learner of multiple trees for a stronger output 
prediction [13]. XGBoost is a specific implementation 
of gradient tree boosting that produces a risk prediction 
model (called a strong learner) in the form of an ensem-
ble of weak risk prediction models (weak learners), typi-
cally decision trees [14]. LGBM is an ensemble approach 
that combines predictions from multiple decision trees to 
make well-generalized final predictions [15].

The predictive performances of the prediction mod-
els were assessed by developing receiver operating char-
acteristic (ROC) curves and calculating the areas under 
them (AUC), accuracy, sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value 
(NPV) with a 95% confidence interval (CI).

Statistical analysis
Mean ± standard deviation (Mean ± SD) was used to 
describe the distribution of normally distributed meas-
urement data, and a t-test was applied to compare the 
differences between the two groups. Median and quar-
tiles [M (Q1, Q3)] were used to describe the distribu-
tion of measurements that did not conform to normal 
distribution, and the Wilcoxon rank sum test was used 
to compare the difference between the two groups. The 
counting data were described by the number of cases 
and the composition ratio (n (%)), and the differences 
between groups were compared by the chi-square test. 
The simple deletion method was adopted to deal with the 

missing values in the data, then sensitivity analysis was 
conducted to compare the original data with the deleted 
data. Least absolute shrinkage and selection operator 
(LASSO) (R package "glmnet") with tenfold cross-vali-
dation (lambda = 0.0362126 was selected) was used to 
screen the predictive variables of the model. The predic-
tive models were internally validated using bootstrapped 
validation, a statistical method in which multiple evolu-
tionary trees are constructed to check model confidence 
by repeatedly sampling data sets.

Results were considered significant at alpha = 0.05. 
Statistical analysis was conducted using R version 4.2.1 
(2022–06-23 ucrt) and Python 3.9.12.

Results
Characteristics of included participants
In this study, 1,857 women undergoing IVF or ICSI were 
analyzed, comprising 1423 women in the training set, 
356 in the validation set, and 78 women in the testing 
set. Data selection and collection are shown in Fig.  1. 
Of the 1,857 women who underwent IVF or ICSI, 851 
women (45.83%) had a live birth. The mean maternal 
age was 31.85 ± 4.51 years, with the mean maternal BMI 
being 21.40 (19.60, 23.60) kg/m2. Primary infertility and 
secondary infertility accounted for 57.30%, and 42.70%, 
respectively. The IVF and ICSI methods accounted for 
81.42% and 18.58% respectively. Significant differences 
were found between the women who had a live birth 
and women without a live birth in maternal age, stimula-
tion protocols, causes of infertility, the number of preg-
nancies, the number of deliveries, type of infertility, the 
number of left sinus follicles, the number of right sinus 
follicles, basal LH level, basal PR level, basal P level, 
AMH level, Gn, LH level on HCG day, E2 level on HCG 
day, the number of embryos transferred, EMT on HCG 
day, types of transferred embryos, and HCG (all P < 0.05). 
The baseline characteristics of the study population are 
summarized in Table 1.

Identification of predictive factors for live birth in women 
who received IVF or ICSI for the first time
The predictive factors before the first cycle included 
maternal age, AMH, basal FSH, basal P, basal E2, infertil-
ity duration, and the number of left sinus follicles. Iden-
tification of the predictive factors before the first cycle is 
shown in Fig. 2.

Maternal age, serum HCG level, EMT on HCG day, the 
number of pregnancies, types of transferred embryos, 
basal E2, basal PRL, LH level on HCG day, AMH, infer-
tility duration, method of fertilizations, E2 level on HCG 
day, the number of left sinus follicles, stimulation pro-
tocols, endometrial preparation protocol, and Gn were 
identified as the predictive factors after the first cycle. 
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Figure 3 depicts the identification of the predictive factor 
after the first cycle.

Construction and predictive performance evaluation 
of the predictive models for live birth in women who 
received IVF or ICSI for the first time
Based on the predictive factors before the first cycle, 
four predictive models: LR, RF, LGBM, and XGBoost 
were conducted. The AUC value of RF, LGBM, XGBoost, 
and LR, was 0.721 [95% confidence interval (CI): 0.695 
to 0.748], 0.678 (95% CI: 0.651 to 0.706), 0.806 (95% 
CI: 0.784 to 0.829), and 0.641 (95% CI: 0.613–0.670), 
respectively, in the training set and 0.614 (95% CI: 0.555 
to 0.672), 0.612 (95% CI: 0.553 to 0.670), 0.598 (95% 
CI: 0.539 to 0.657), and 0.630 (95% CI: 0.572 to 0.687), 
respectively, in the validation set. In the testing set, the 
AUC value of RF, LGBM, XGBoost, and LR, was 0.641 
(95% CI: 0.516 to 0.766), 0.634 (95% CI: 0.511 to 0.758), 
0.644 (95% CI: 0.521 to 0.768), and 0.645 (95% CI: 0.521 
to 0.769), respectively. The AUC value of the bootstrap 
for RF, LGBM, XGBoost, and LR, was 0.705 (95% CI: 
0.662 to 0.747), 0.670 (95% CI: 0.626 to 0.715), 0.789 (95% 
CI: 0.752 to 0.826), and 0.639 (95% CI: 0.593 to 0.684), 
respectively. The AUC, accuracy, sensitivity, specific-
ity, PPV, and NPV of the predictive model for live birth 
before the first cycle are shown in Table 2.

Four predictive models: LR, RF, LGBM, and XGBoost 
were also conducted based on the predictive factors 
before and after the first cycle. As Table  2 shows, the 

AUC value in the training set, validation set, testing 
set, and bootstrap of the RF was 0.871 (95% CI: 0.853 
to 0.888), 0.789 (95% CI: 0.742 to 0.836), 0.862 (95% 
CI: 0.781 to 0.943), and 0.862 (95% CI: 0.833 to 0.892), 
respectively. The AUC value in the training set, valida-
tion set, testing set, and bootstrap of LGBM was 0.841 
(95% CI: 0.821 to 0.861), 0.816 (95% CI: 0.773 to 0.859), 
0.835 (95% CI: 0.743 to 0.926), and 0.839 (95% CI: 0.806 
to 0.871), respectively. The AUC value in the training set, 
validation set, testing set, and bootstrap of XGBoost was 
0.898 (95% CI: 0.883 to 0.914), 0.806 (95% CI: 0.761 to 
0.851), 0.843 (95% CI: 0.753 to 0.933), and 0.889 (95% CI: 
0.863 to 0.915), respectively. The AUC value in the train-
ing set, validation set, testing set, and bootstrap of LR 
was 0.656 (95% CI: 0.628 to 0.684), 0.652 (95% CI: 0.527 
to 0.777), 0.668 (95% CI: 0.612 to 0.724), and 0.665 (95% 
CI: 0.620 to 0.710), respectively.

Discussion
In this study, among the 1,857 women, 851 women 
(45.83%) ended up with live birth. We respectively con-
structed 8 machine learning models to predict the live 
birth for the first complete IVF attempt or ICSI using 
predictive factors before and after the first cycle. The 
result showed that the LGBM model achieved a robust 
performance before and after the first cycle compared 
with LR, XGB, and RF. LGBM showed better predic-
tive performance on the live birth chance after the first 
cycle compared with the prediction models before the 

Fig. 1  The flow diagram of data screening and participants collections
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Table 1  Basic characteristics of included participants

Variables Total (n = 1857) No (n = 1006) Yes (n = 851) Statistics P

Maternal age, years, Mean ± SD 31.85 ± 4.51 32.81 ± 4.65 30.72 ± 4.06 t = 10.33 < 0.001

Fertilizations method χ2 = 2.386 0.122

  IVF 1512 (81.42) 832 (82.70) 680 (79.91)

  ICSI 345 (18.58) 174 (17.30) 171 (20.09)

Stimulation protocols, n (%) χ2 = 9.470 0.009

  Long protocol 1336 (71.94) 696 (69.18) 640 (75.21)

  Antagonist protocol 478 (25.74) 281 (27.93) 197 (23.15)

  Other protocol 43 (2.32) 29 (2.88) 14 (1.65)

Endometrial preparation protocol, n (%) χ2 = 0.607 0.895

  No 999 (53.80) 539 (53.58) 460 (54.05)

  Ovulation induction protocol cycles 61 (3.28) 31 (3.08) 30 (3.53)

  Natural cycles 234 (12.60) 125 (12.43) 109 (12.81)

  Hormone replacement treatment cycles 563 (30.32) 311 (30.91) 252 (29.61)

Luteal phase support, n (%) χ2 = 0.483 0.785

  Cyclogest + dydrogesterone 1300 (70.01) 698 (69.38) 602 (70.74)

  Progesterone administered intramus-
cularly

328 (17.66) 183 (18.19) 145 (17.04)

  Crinon + dydrogesterone 229 (12.33) 125 (12.43) 104 (12.22)

Causes of infertility, n (%) χ2 = 11.402 0.010

  Man 447 (24.07) 213 (21.17) 234 (27.50)

  Women 1063 (57.24) 607 (60.34) 456 (53.58)

  Both 217 (11.69) 117 (11.63) 100 (11.75)

  Unknown 130 (7.00) 69 (6.86) 61 (7.17)

Maternal BMI, kg/m2, M (Q1,Q3) 21.40 (19.60, 23.60) 21.50 (19.70, 23.70) 21.40 (19.60, 23.40) Z = -1.145 0.252

The number of pregnancies, M (Q1, Q3) 1.00 (0.00, 2.00) 1.00 (0.00, 2.00) 1.00 (0.00, 2.00) Z = -2.908 0.004

The number of deliveries, M (Q1, Q3) 0.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.00 (0.00, 0.00) Z = -3.316  < 0.001

The number of miscarriages, M (Q1, Q3) 0.00 (0.00, 1.00) 0.00 (0.00, 1.00) 0.00 (0.00, 1.00) Z = -1.814 0.070

Type of infertility, n (%) χ2 = 8.850 0.003

  Primary infertility 1064 (57.30) 608 (60.44) 456 (53.58)

  Secondary infertility 793 (42.70) 398 (39.56) 395 (46.42)

  Infertility duration, years, M (Q1, Q3) 3.00 (2.00, 5.00) 3.00 (2.00, 5.00) 3.00 (2.00, 5.00) Z = -1.513 0.130

The number of left sinus follicles, n (%) χ2 = 36.892  < 0.001

   <  = 7 791 (42.60) 493 (49.01) 298 (35.02)

   > 7 1066 (57.40) 513 (50.99) 553 (64.98)

The number of right sinus follicles, n (%) χ2 = 17.568  < 0.001

   <  = 7 1096 (59.02) 638 (63.42) 458 (53.82)

   > 7 761 (40.98) 368 (36.58) 393 (46.18)

Basal FSH, mIU/ml, M (Q1, Q3) 6.69 (5.62, 7.97) 6.75 (5.66, 8.06) 6.59 (5.56, 7.83) Z = -1.710 0.087

Basal LH, mIU/ml, M (Q1, Q3) 5.54 (4.14, 7.39) 5.44 (4.11, 7.26) 5.68 (4.18, 7.53) Z = 2.158 0.031

Basal PRL, ng/ml, M (Q1, Q3) 19.87 (14.37, 28.69) 19.07 (13.78, 27.76) 20.84 (14.96, 29.91) Z = 3.047 0.002

Basal E2, pg/ml, M (Q1, Q3) 39.30 (29.00, 52.40) 39.60 (29.20, 53.00) 38.80 (28.80, 51.80) Z = -1.455 0.146

Basal P, ng/ml, M(Q1,Q3) 0.25 (0.16, 0.38) 0.24 (0.15, 0.36) 0.26 (0.17, 0.40) Z = 2.626 0.009

AMH, ng/ml, M (Q1, Q3) 3.00 (1.82, 4.72) 2.75 (1.63, 4.47) 3.26 (2.07, 5.11) Z = 5.591  < 0.001

Type of embryos, n (%) χ2 = 0.099 0.754

  Fresh embryos 1003 (54.01) 540 (53.68) 463 (54.41)

  Frozen embryos 854 (45.99) 466 (46.32) 388 (45.59)

The number of embryos transferred, 
Mean ± SD

1.68 ± 0.47 1.69 ± 0.46 1.67 ± 0.47 t = 0.82 0.415

Gn, IU, M (Q1, Q3) 2700.00 (2025.00, 3450.00) 2850.00 (2100.00, 3525.00) 2600.00 (1875.00, 3300.00) Z = -3.755  < 0.001

duration of Gn, days, Mean ± SD 10.87 ± 2.05 10.82 ± 2.10 10.93 ± 2.00 t = -1.13 0.261
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first cycle. The predictive factors before the first cycle 
included maternal age, AMH, basal FSH, basal P, basal 
E2, infertility duration, and the number of left sinus folli-
cles. Sixteen predictive factors were identified that affect 
the live birth before and after the first cycle of IVF/ICSI 
including maternal age, AMH, basal E2, basal PRL, infer-
tility duration, the number of pregnancies, the number of 
left sinus follicles, serum HCG level, EMT on HCG day, 
LH level on HCG day, E2 level on HCG day, Gn, method 

of fertilizations, types of transferred embryos, stimula-
tion protocols, and endometrial preparation protocol.

Several predictive models have been developed to 
assess the outcome of IVF treatment. One of the early 
and most accepted prediction models is the McLernon 
model [16, 17], which utilizes only discrete LR to pre-
dict the chance of live birth for a couple. In addition, the 
McLernon model did not take several important factors 
such as BMI and AMH into account. Unlike classical 

SD standard deviation, M Median, Q1 1st Quartile, Q3 3st Quartile, BMI body mass index, IVF in vitro fertilization, ICSI intracytoplasmic sperm injection, FSH follicle-
stimulating hormone, LH luteinizing hormone, PRL prolactin, E2 serum estradiol, T testosterone, P progesterone, AMH anti-mullerian hormone, Gn gonadotropin, EMT 
endometrial thickness, HCG human chorionic gonadotophin, t T-test, Z Wilcoxon rank sum test; χ2: chi-square test

Table 1  (continued)

Variables Total (n = 1857) No (n = 1006) Yes (n = 851) Statistics P

LH level on HCG day, mIU/ml, M (Q1, Q3) 1.20 (0.70, 2.08) 1.23 (0.70, 2.19) 1.14 (0.70, 1.90) Z = -1.996 0.046

E2 level on HCG day, pg/ml, M (Q1, Q3) 2949.00 (1784.00, 4588.00) 2720.50 (1602.00, 4196.00) 3235.00 (1961.00, 4956.00) Z = 4.844  < 0.001

The number of embryos transferred, M 
(Q1, Q3)

2.00 (0.00, 2.00) 2.00 (0.00, 2.00) 2.00 (0.00, 2.00) Z = -2.507 0.012

EMT on HCG day, mm, Mean ± SD 10.72 ± 2.41 10.54 ± 2.48 10.93 ± 2.31 t = -3.45  < 0.001

P on HCG day, ng/ml, M (Q1, Q3) 0.75 (0.47, 1.19) 0.74 (0.46, 1.17) 0.78 (0.49, 1.20) Z = 1.805 0.071

Types of transferred embryos, n (%) χ2 = 14.478  < 0.001

  Blastocyst 1314 (70.76) 749 (74.45) 565 (66.39)

  Cleavage embryo 543 (29.24) 257 (25.55) 286 (33.61)

HCG, n (%) χ2 = 588.084  < 0.001

   < 5 509 (27.41) 508 (50.50) 1 (0.12)

   >  = 5 1348 (72.59) 498 (49.50) 850 (99.88)

Fig. 2  The feature importance of the predictive factors before the first cycle
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statistics, machine learning algorithms can take into 
account complex associations between different param-
eters, and thus can better exploit the synergy between 
these correlated parameters [12]. ZoharBarnett-Itzhaki 
et  al. [12] used age, BMI, and clinical characteristics to 
predict IVF outcomes in 136 women undergoing fresh 
IVF cycles. The author found that compared with LR, the 
accuracy of artificial neural network (NN) and support 
vector machine (SVM) was 0.69 to 0.9 and 0.45 to 0.77, 
respectively, while the accuracy was 0.34 to 0.74 using 
LR model, indicating that machine learning algorithms 
based on age, BMI, and clinical data are superior to LR 
in predicting IVF outcomes. CelineBlank et  al. used the 
parameters before and after the cycle to develop a RF 
model to predict the implantation rate after fresh blas-
tocyst transfer and compared it with the LR model [18]. 
The results showed that the AUC of the RF model was 
0.74, and the AUC of the traditional LR model was 0.66. 
Qiu et  al. used a machine learning method to establish 
a personalized prediction of live birth prior to the first 
IVF and found that the XGBoost model achieved an area 
under the ROC curve of 0.73. However, this model was 
only established based on the factors before the first cycle 
[7]. In this study, we used machine learning techniques 
to predict live birth in women undergoing IVF treatment 
or ICSI based on the predictive factors before and after 
the first cycle. Our results showed that the LGBM model 
had a robust performance before and after the first cycle 

of IVF treatment in comparison with LR. Our study also 
indicated that the prediction model indicated a better 
predictive performance on the live birth chance after the 
first cycle compared with the prediction models before 
the first cycle. We speculate that this possible reason 
may be that the prediction model based on the predictive 
factors after the first cycle is closer to the live birth out-
come, so it is more suitable to predict the live births. This 
study might be a promising step to provide personalized 
estimates of live birth chance of the IVF or ICSI before 
and after the first cycle based on the machine learning 
algorithms.

In previous prediction models, female age was the most 
established predictive factor associated with live birth 
after IVF/ICSI [7, 12, 19]. A study by Hassan et al. pro-
posed a hill-climbing feature selection algorithm with five 
different machine learning models to analyze and predict 
IVF pregnancies with higher accuracy and has found that 
age was the most important factor affecting IVF preg-
nancy outcomes [6]. Our study demonstrated that mater-
nal age was related to live birth for women before and 
after the first cycle of IVF/ICSI. Female ovarian reserve 
gradually declines with age, and the quantity and quality 
of oocytes decrease significantly, which has a significant 
negative impact on the success of pregnancy in patients 
undergoing IVF/ICSI treatment [20]. We observed that 
the infertility duration, the number of pregnancies, and 
the number of left sinus follicles were associated with the 

Fig. 3  The feature importance of the predictive factors before and after the first cycle
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Table 2  The predictive performance evaluation of the predictive models for live birth in women who received IVF or ICSI for the first 
time

Subgroups Models Datasets AUC​ Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV (95% CI) NPV (95% CI) Accuracy (95% 
CI)

Before the first 
cycle

RF Train 0.721 (0.695–
0.748)

0.740 (0.707–
0.773)

0.602 (0.567–
0.636)

0.620 (0.586–
0.653)

0.725 (0.690–
0.760)

0.666 (0.642–
0.691)

Before the first 
cycle

RF Valid 0.614 (0.555–
0.672)

0.809 (0.747–
0.872)

0.387 (0.320–
0.454)

0.496 (0.434–
0.558)

0.731 (0.648–
0.815)

0.567 (0.516–
0.619)

Before the first 
cycle

RF Test 0.641 (0.516–
0.766)

0.765 (0.622–
0.907)

0.568 (0.422–
0.715)

0.578 (0.433–
0.722)

0.758 (0.611–
0.904)

0.654 (0.548–
0.759)

Before the first 
cycle

RF Bootstrap 0.705 (0.662–
0.747)

0.588 (0.528–
0.649)

0.680 (0.627–
0.732)

0.606 (0.545–
0.667)

0.664 (0.611–
0.716)

0.638 (0.599–
0.678)

Before the first 
cycle

LGBM Train 0.678 (0.651–
0.706)

0.645 (0.609–
0.681)

0.627 (0.592–
0.661)

0.603 (0.567–
0.638)

0.668 (0.633–
0.703)

0.635 (0.610–
0.660)

Before the first 
cycle

LGBM Valid 0.612 (0.553–
0.670)

0.678 (0.603–
0.752)

0.539 (0.471–
0.608)

0.523 (0.453–
0.593)

0.692 (0.620–
0.764)

0.598 (0.547–
0.649)

Before the first 
cycle

LGBM Test 0.634 (0.511–
0.758)

0.824 (0.695–
0.952)

0.477 (0.330–
0.625)

0.549 (0.412–
0.686)

0.778 (0.621–
0.935)

0.628 (0.521–
0.735)

Before the first 
cycle

LGBM Bootstrap 0.670 (0.626–
0.715)

0.602 (0.542–
0.662)

0.636 (0.582–
0.690)

0.581 (0.521–
0.640)

0.657 (0.602–
0.711)

0.621 (0.580–
0.661)

Before the first 
cycle

XGBoost Train 0.806 (0.784–
0.829)

0.792 (0.762–
0.823)

0.675 (0.642–
0.709)

0.682 (0.649–
0.715)

0.788 (0.756–
0.819)

0.730 (0.707–
0.753)

Before the first 
cycle

XGBoost Valid 0.598 (0.539–
0.657)

0.730 (0.660–
0.801)

0.466 (0.397–
0.534)

0.505 (0.438–
0.571)

0.699 (0.621–
0.776)

0.579 (0.527–
0.630)

Before the first 
cycle

XGBoost Test 0.644 (0.521–
0.768)

0.824 (0.695–
0.952)

0.523 (0.375–
0.670)

0.571 (0.433–
0.710)

0.793 (0.646–
0.941)

0.654 (0.548–
0.759)

Before the first 
cycle

XGBoost Bootstrap 0.789 (0.752–
0.826)

0.678 (0.621–
0.736)

0.754 (0.705–
0.802)

0.697 (0.640–
0.755)

0.737 (0.688–
0.786)

0.719 (0.682–
0.757)

Before the first 
cycle

LR Train 0.641 (0.613–
0.670)

0.659 (0.623–
0.695)

0.563 (0.528–
0.599)

0.570 (0.535–
0.605)

0.653 (0.616–
0.689)

0.608 (0.583–
0.633)

Before the first 
cycle

LR Valid 0.630 (0.572–
0.687)

0.539 (0.460–
0.619)

0.672 (0.607–
0.736)

0.550 (0.470–
0.630)

0.662 (0.597–
0.726)

0.615 (0.565–
0.666)

Before the first 
cycle

LR Test 0.645 (0.521–
0.769)

0.765 (0.622–
0.907)

0.568 (0.422–
0.715)

0.578 (0.433–
0.722)

0.758 (0.611–
0.904)

0.654 (0.548–
0.759)

Before the first 
cycle

LR Bootstrap 0.639 (0.593–
0.684)

0.505 (0.443–
0.566)

0.679 (0.627–
0.732)

0.568 (0.504–
0.633)

0.621 (0.569–
0.673)

0.600 (0.559–
0.641)

Before and after 
the first cycle

RF Train 0.871 (0.853–
0.888)

0.913 (0.891–
0.934)

0.661 (0.627–
0.695)

0.703 (0.672–
0.733)

0.896 (0.871–
0.922)

0.779 (0.757–
0.800)

Before and after 
the first cycle

RF Valid 0.789 (0.742–
0.836)

0.987 (0.969–
1.000)

0.569 (0.501–
0.637)

0.630 (0.569–
0.692)

0.983 (0.960–
1.000)

0.747 (0.702–
0.792)

Before and after 
the first cycle

RF Test 0.862 (0.781–
0.943)

1.000 (1.000–
1.000)

0.682 (0.544–
0.819)

0.708 (0.580–
0.837)

1.000 (1.000–
1.000)

0.821 (0.735–
0.906)

Before and after 
the first cycle

RF Bootstrap 0.862 (0.833–
0.892)

0.913 (0.879–
0.948)

0.663 (0.610–
0.716)

0.694 (0.644–
0.743)

0.902 (0.863–
0.941)

0.777 (0.742–
0.811)

Before and after 
the first cycle

LGBM Train 0.841 (0.821–
0.861)

0.910 (0.888–
0.932)

0.633 (0.599–
0.668)

0.685 (0.655–
0.716)

0.889 (0.862–
0.915)

0.762 (0.740–
0.785)

Before and after 
the first cycle

LGBM Valid 0.816 (0.773–
0.859)

0.993 (0.981–
1.000)

0.554(0.486–
0.622)

0.624 (0.563–
0.685)

0.991 (0.974–
1.000)

0.742 (0.696–
0.787)

Before and after 
the first cycle

LGBM Test 0.835 (0.743–
0.926)

0.941 (0.862–
1.000)

0.705 (0.570–
0.839)

0.711 (0.579–
0.844)

0.939(0.858–
1.000)

0.808 (0.720–
0.895)

Before and after 
the first cycle

LGBM Bootstrap 0.839 (0.806–
0.871)

0.917 (0.883–
0.951)

0.627 (0.573–
0.682)

0.673 (0.624–
0.722)

0.901 (0.861–
0.941)

0.759 (0.724–
0.795)

Before and after 
the first cycle

XGBoost Train 0.898 (0.883–
0.914)

0.808 (0.778–
0.837)

0.828 (0.802–
0.855)

0.805 (0.775–
0.835)

0.831 (0.804–
0.857)

0.819 (0.799–
0.839)

Before and after 
the first cycle

XGBoost Valid 0.806 (0.761–
0.851)

0.993 (0.981–
1.000)

0.549 (0.481–
0.617)

0.621 (0.560–
0.682)

0.991 (0.974–
1.000)

0.739 (0.693–
0.784)

Before and after 
the first cycle

XGBoost Test 0.843 (0.753–
0.933)

1.000 (1.000–
1.000)

0.682 (0.544–
0.819)

0.708 (0.580–
0.837)

1.000 (1.000–
1.000)

0.821 (0.735–
0.906)
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birth rate in women with IVF treatment. Mo et al. found 
that the number of infertility years, and sinus follicles 
were related to the success of treatment of IVF-embryo 
transfer [21]. A prediction model has reported that the 
duration of infertility was the predictive factor of live 
birth prior to the first IVF treatment [7].

In this study, hormone levels could be the predictive 
factors for live birth in women with IVF or ICSI. AMH, 
basal FSH, basal P, and basal E2 were associated with live 
birth before the first cycle of IVF/ICSI and AMH, basal 
E2, basal PRL, serum HCG level, LH level on HCG day, 
E2 level on HCG day, and Gn were found to affect the live 
birth after the first cycle of IVF/ICSI. Gn has been used to 
induce multiple follicle development and increase ovar-
ian stimulation efficiency in infertile women since the 
1960s [22]. AMH can inhibit follicular proliferation and 
growth by limiting the functions of growth factors and 
Gn, and it directly reflects the condition of the primor-
dial follicles and effectively predicts the patient’s ovar-
ian reserve [23]. A previous systematic review suggested 
that AMH has some value in the prediction of live birth, 
and can be a predictor of live birth in women undergo-
ing assisted conception [24]. Estrogen levels in women 
would be reduced as ovarian reserve decreases, resulting 
in an increase in FSH secretion. The elevated basal FSH 
level is associated with the decline of ovarian reserve 
[25]. A study evaluating the impact of different etiologies 
of diminished ovarian reserve on pregnancy outcome in 
IVF-ET cycles indicated that elevated basal FSH affects 
the number of oocytes retrieved and the implantation 
rates after IVF/ICSI [26]. Farhi et  al. reported that ele-
vated E2 levels during IVF cycles were linked to a higher 
incidence of adverse pregnancy outcomes [27]. Lower 
basal E2 was associated with better pregnancy rates and 
ovarian reserve during IVF utilizing a gonadotropin 
releasing hormone (GnRH) antagonist [28]. Morales et al. 
reported serum E2 on the day of the trigger as a predictor 

of metaphase II oocytes in antagonist cycles encourage 
greater oocyte maturity and fertilization [29]. Chen et al. 
found that high serum E2 level on HCG day was associ-
ated with decreased live-birth rates in patients with fro-
zen embryo transfer [30]. Previous studies showed that 
the alterations of these hormones such as basal LH, basal 
PRL, and basal P levels were associated with pregnancy 
in embryo transfer [31–33]. In addition to the hormone 
levels, a study [34] evaluating the probability of live birth 
after a freeze-all based on an IVF treatment strategy 
found that EMT was one of the most important predic-
tive factors. A meta-analysis indicated that women with 
thinner EMT are inversely associated with IVF/ICSI suc-
cess, whereas higher endometrium tends to confer the 
best outcome [35]. Wen et  al. [19] have identified EMT 
as one of the independent predictors affecting IVF/ICSI 
success. EMT on HCG day was highlighted as a predic-
tive factor for live birth in our model after the first cycle 
of IVF/ICSI.

In this study, the method of fertilization and types of 
transferred embryos were associated with live births in 
women who received IVF or ICSI. Previous studies indi-
cated that the quality and implantation potential of fro-
zen embryos is similar to or even better than that of fresh 
embryos [36–38]. In practice, the freeze-all strategy can 
reduce the risk of ovarian hyperstimulation syndrome 
(OHSS) in the ovarian stimulation cycle by avoiding 
pregnancy and obtaining better results [39]. However, 
the results of a previous meta-analysis showed no dif-
ferences in fertilization rate, total fertilization failure 
rate, good embryo quality rate, fresh embryo implanta-
tion clinical pregnancy rate, fresh embryo transfer live 
birth rate, miscarriage rate, neonatal preterm birth rate 
and neonatal low birth weight rate in those treated with 
ICSI compared with IVF [40]. The relationship between 
the fertilization method and live birth needs further 
clarification. We found that stimulation protocols and 

IVF in vitro fertilization, ICSI intracytoplasmic sperm injection, LR logistic regression, RF random forest, XGBoost extreme gradient boosting, LGBM light gradient 
boosting machine, NPV negative predictive value, PPV positive predictive value, AUC​ area under curve, CI confidence interval

Table 2  (continued)

Subgroups Models Datasets AUC​ Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV (95% CI) NPV (95% CI) Accuracy (95% 
CI)

Before and after 
the first cycle

XGBoost Bootstrap 0.889 (0.863–
0.915)

0.943 (0.915–
0.972)

0.660(0.607–
0.714)

0.699 (0.650–
0.747)

0.933 (0.900–
0.966)

0.789 (0.755–
0.823)

Before and after 
the first cycle

LR Train 0.656 (0.628–
0.684)

0.753 (0.721–
0.786)

0.479 (0.443–
0.514)

0.559 (0.527–
0.592)

0.689(0.649–
0.728)

0.607 (0.582–
0.633)

Before and after 
the first cycle

LR Valid 0.652 (0.527–
0.777)

0.882 (0.774–
0.991)

0.455 (0.307–
0.602)

0.556 (0.423–
0.688)

0.833 (0.684–
0.982)

0.641 (0.535–
0.747)

Before and after 
the first cycle

LR Test 0.668 (0.612–
0.724)

0.789 (0.725–
0.854)

0.525 (0.456–
0.593)

0.553 (0.487–
0.619)

0.770 (0.700–
0.840)

0.638 (0.588–
0.688)

Before and after 
the first cycle

LR Bootstrap 0.665 (0.620–
0.710)

0.499 (0.438–
0.560)

0.722 (0.671–
0.772)

0.600 (0.534–
0.666)

0.633 (0.582–
0.683)

0.620 (0.580–
0.661)



Page 10 of 12Liu et al. BMC Pregnancy and Childbirth          (2023) 23:476 

endometrial preparation protocols were related to the 
live births in women who received IVF or ICSI. A pre-
vious study indicated that live birth rates per transferred 
embryo were significantly increased by GnRH agonist 
administration in women stimulated either with the 
long protocol or with a GnRH antagonist [41]. In women 
undergoing single euploid frozen blastocyst transfer, the 
natural cycles group had a lower pregnancy loss rate and 
ultimately a higher live birth rate compared with the hor-
mone replacement treatment group [42]. A retrospective 
study of 12,950 frozen embryo transfer cycles published 
by Li et  al. concluded a comparable clinical pregnancy 
rate and a lower live birth rate when hormone replace-
ment treatment cycles were compared with natural cycles 
[42].

Our prediction models not only estimate the chances 
of success in couples before commencing IVF but also 
are able to revise these chances on the basis of the cou-
ple’s response to a first treatment cycle. The prediction 
model before the first cycle can be used to interrogate 
couples before treatment, while the predictive model 
after the first cycle predicts the chances of future suc-
cess for couples considering further treatment. Our study 
has a number of strengths. First of all, we introduced 
the parameters before and after the first cycle when 
constructing the models for live birth, which provided 
the summary information of the success opportunities 
before and after the treatment. Secondly, machine learn-
ing methods were used to predict live birth in pregnant 
women undergoing the first IVF in the Chinese popula-
tion, including fresh and frozen embryo transfer. Thirdly, 
the factors included are comprehensive, which improves 
the prediction ability of the prediction models. However, 
several limitations deserve to be mentioned. Firstly, the 
study was retrospective, single-center, and encompassed 
a limited number of patients. Secondly, the lack of exter-
nal validation and the study population was pregnant 
women undergoing IVF for the first time, which may 
limit the popularization of our research results. Thirdly, 
without an impact analysis, it is impossible to verify 
whether the clinical decisions made by clinicians com-
bined with the prediction performance of the models can 
improve the live birth rate or reduce the treatment cost. 
Finally, the prediction models were constructed based on 
limited predictive factors obtained before and after IVF 
treatment, however, pregnancy is a dynamic and ongoing 
process, and there are many other confounders that have 
an effect at different time points.

Conclusion
This study indicated that machine learning-based pre-
dictive model could be used as a tool to predict live birth 
in women with IVF cycles, This study may help predict 

the chances of live birth before and after the first cycles 
of IVF or ICSI using personalized information, helping 
shape couples’ expectations of their IVF or ICSI outcome, 
allowing them to plan their treatments more efficiently 
and prepare emotionally and financially.
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