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Abstract 

Background  Early prediction of Gestational Diabetes Mellitus (GDM) risk is of particular importance as it may enable 
more efficacious interventions and reduce cumulative injury to mother and fetus. The aim of this study is to develop 
machine learning (ML) models, for the early prediction of GDM using widely available variables, facilitating early 
intervention, and making possible to apply the prediction models in places where there is no access to more complex 
examinations.

Methods  The dataset used in this study includes registries from 1,611 pregnancies. Twelve different ML models and 
their hyperparameters were optimized to achieve early and high prediction performance of GDM. A data augmenta-
tion method was used in training to improve prediction results. Three methods were used to select the most relevant 
variables for GDM prediction. After training, the models ranked with the highest Area under the Receiver Operating 
Characteristic Curve (AUCROC), were assessed on the validation set. Models with the best results were assessed in the 
test set as a measure of generalization performance.

Results  Our method allows identifying many possible models for various levels of sensitivity and specificity. Four 
models achieved a high sensitivity of 0.82, a specificity in the range 0.72–0.74, accuracy between 0.73–0.75, and 
AUCROC of 0.81. These models required between 7 and 12 input variables. Another possible choice could be a model 
with sensitivity of 0.89 that requires just 5 variables reaching an accuracy of 0.65, a specificity of 0.62, and AUCROC of 
0.82.

Conclusions  The principal findings of our study are: Early prediction of GDM within early stages of pregnancy using 
regular examinations/exams; the development and optimization of twelve different ML models and their hyperpa-
rameters to achieve the highest prediction performance; a novel data augmentation method is proposed to allow 
reaching excellent GDM prediction results with various models.
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Introduction
Gestational Diabetes Mellitus (GDM) is defined as any 
degree of glucose intolerance with onset or first recog-
nition during pregnancy [1, 2]. In 2017, it was estimated 
that around 14% of pregnancies were affected by GDM 
worldwide [3]. The prevalence of GDM varies among 
countries and regions and is substantially impacted by 
the diagnostic criteria employed [3–6]. GDM is asso-
ciated with increased risk of acute and chronic dis-
ease for both mother and developing fetus [1, 4, 7, 8]. 
Adverse fetal outcomes associated with GDM include 
increased risk of insulin resistance, macrosomia, pre-
term birth, respiratory distress, neonatal intensive care 
unit admission and stillbirth [9–11]. Adverse maternal 
outcomes associated with GDM include depression, a 7 
to tenfold increase in the risk of developing Type 2 Dia-
betes Mellitus (T2DM; relative to non-GDM women), 
elevated risk of liver and renal disease, more adverse 
lipid profiles and a twofold increase in risk of cardio-
vascular disease [9–11], including insulin resistance.

There is no uniform consensus on the optimal diag-
nostic criteria for the diagnosis of GDM. The first diag-
nostic test for GDM recommended by O’Sullivan and 
Mahan in 1964 [12] employed a fasting three-hour oral 
glucose tolerance test (OGTT) using 100  g of glucose 
with whole-blood analyses, with two or more elevated 
measurements at fasting 3 h required for a GDM diag-
nosis [9]. A series of protocol amendments followed, 
leading to the development of a two-step protocol 
based around an initial screening test (1  h, non-fast-
ing 50  g glucose challenge with cut-offs ranging from 
130–140 mg/dl) followed by a diagnostic glucose toler-
ance test (measuring fasting, 1 h, 2 h, and 3 h glucose 
levels) [9, 12]. More recently, based on the finding of 
the Hyperglycemia and Adverse Pregnancy Outcome 
(HAPO) Study, a one-step screening strategy pro-
posed by the International Association of Diabetes and 
Pregnancy Study Groups (IADPSG) recommended 
the use of a fasting two-hour 75  g oral glucose toler-
ance test [13]. Although the one-step IADPSG has the 
obvious advantage of requiring only a single test and 
one elevated glucose measurement, its use has raised 
concerns regarding GDM overdiagnosis [9]. Interest-
ingly, several studies have reported that the preva-
lence of GDM as two to three-fold higher using the 
IADPSG one-step approach compared to the two-step 
screen and diagnose protocol, but no clear improve-
ment in pregnancy outcomes. Highlighting the lack of 
consensus in the field, Fu and Retnakaran [9] note that 
although the one-step IADPSG protocol is endorsed by 
the International Federation of Gynecology and Obstet-
rics, the American Diabetes Association and the World 
Health Organization (WHO), the two-step screen and 

diagnose protocol is endorsed by the National Insti-
tutes of Health and the American College of Obstetri-
cians and Gynecologists [9].

Irrespective of the diagnostic approach used, the cur-
rent paradigm has a number of inherent disadvantages. 
OGTT is time consuming for clinicians and patients, it 
cannot easily be applied to the total population and is 
associated with a high false positive rate [14]. Results 
can be impacted strongly by pre-analytical laboratory 
practices; for example, room temperature glycolysis by 
leukocytes and erythrocytes prior to centrifugation can 
reduce glucose levels between five and seven percent per 
hour [15]; in a recent Australian study of 12,317 women, 
when centrifugation was performed within ten min-
utes of sample collection the GDM diagnosis rate nearly 
doubled from 11.6% to 20.6% using the IADPSG criteria 
[16]. Secondly, OGTT at 24–28 weeks of gestation does 
not facilitate treatment early in pregnancy. As articulated 
by Sweeting and colleagues [11], although most inter-
national guidelines recommend early antenatal GDM 
testing for high-risk mothers, there is no current con-
sensus on testing approach or diagnostic thresholds [11]. 
Moreover, there is a lack of evidence to support improved 
pregnancy outcomes with the early diagnosis and treat-
ment of GDM based on current approaches [11]. There 
is, however, evidence to show that a range of first trimes-
ter biomarkers can be used to predict GDM development 
later in pregnancy, and that fetal macrosomia can occur 
prior to a diagnosis of GDM being made [9]. What is 
clear, however, is the expectation that early and accurate 
prediction of GDM risk can lead to interventions that 
can help to better health outcomes for both mothers and 
babies [17–19].

State of the art
With this objective in mind, several models have been 
developed to diagnose GDM during the early stages 
of gestation [20–35]. Some of these models use simple 
variables, such as age, previous GDM, a first-degree rela-
tive with a family history of diabetes, multiple pregnan-
cies, fasting plasma glucose (FPG), glycated hemoglobin 
(HBA1c) and triglyceride [20]. A rapidly growing body of 
evidence shows that the application of machine learning 
(ML) to analyze data of this nature, and more general bio-
physical and socio-economic metrics (i.e., easily obtained 
from a patient history early in pregnancy) may allow a 
new means by which early and accurate predictions of 
GDM risk may be made [36]. Critically, such predictions 
may be able to be scaled to a population level as they do 
not require the taking of liquid biopsies, the administra-
tion of screening or diagnostic tests, and convey com-
parably little per-test cost. ML approaches have shown 
success in the prediction of preeclampsia [37], GDM 
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from electronic health records [22], and pattern rec-
ognition [38]. In GDM prediction, various models have 
been used including Deep Neural Network (DNN) [20], 
Logistic Regression (LR) [21], Gradient Boosting [22], a 
LR and Extreme Gradient Boosting (XGBoost) [23], and 
Random Forest (RF) with LR [24]. A recent review [36] 
of ML-based models for the prediction of GDM before 
24–28  weeks of pregnancy reported the viability of this 
approach to make predictions from general patient data, 
and emphasized the use of generic clinical variables. The 
best results of previously published models using similar 
input variables and GDM criterion are summarized in 
Table  8. Although several studies focusing on the pre-
diction of GDM have been presented, a model that can 
reach high sensitivity and specificity for early prediction 
of GDM, and with the least number of variables, is still 
clinically needed. Additionally, variables that are widely 
available for screening examinations during pregnancy 
will allow a massive application of the prediction model, 
including low-income areas where more complex tests 
are not available, or may not be able to be executed in a 
highly standardized fashion (i.e., rigorous pre-analytical 
sample processing).

The main objective of our ML models is to predict the 
risk of developing GDM early in pregnancy in order to 
facilitate preventive treatment and reduce the risk of 
adverse maternal and fetal outcomes. As this was a ret-
rospective study, all patients had OGTT data available for 
validation of the GDM diagnosis. It is worth noting that 
the OGTT was not used to develop the models but rather 
to validate the diagnosis of GDM. In the present submis-
sion we report the development of twelve different ML 
models, and the optimizing of their hyperparameters for 
the prediction of GDM, to achieve the highest classifica-
tion performance, and the application of a variable selec-
tion process. Redundant data was eliminated to improve 
model performance.

Materials and methods
Database
The dataset used in this study was obtained from patients 
attending the Obstetrics and Fetal Medicine Unit of the 
Hospital Parroquial de San Bernardo, Santiago, Chile. 
The dataset included registries from 1,611 different preg-
nant patients, from 2019 to 2022. The patients included 
in the dataset have all the available variables/completed; 
patients with missing data are not included. A diagnosis 
of GDM was made using the IADPSG/HAPO criteria 
for gestational diabetes [13, 39], i.e., oral glucose toler-
ance test (75  g) fasting glycemia ≥ 92  mg/dl, or 2  h gly-
cemia ≥ 153 mg/dl in the second trimester. Patients with 
Diabetes Mellitus that had been diagnosed before preg-
nancy were excluded from the dataset. Data was obtained 

during regular maternal visits at up to the 20th week of 
gestation. The third column of Table  1 shows the infor-
mation on the variables and the gestational week at 
which the information was collected. Most of the data 
was obtained during the first maternal visit that hap-
pened anytime between the 4th and 20th weeks of preg-
nancy. We also added a histogram (Fig.  1) showing the 
number of patients per gestational week for the first 
maternal visit. As in previous work [20, 22, 24, 27, 28, 
30, 32, 35], our study was retrospective and therefore the 
dataset was available as described. Patients with Diabetes 
Mellitus diagnosed before pregnancy were excluded from 
the dataset. The data for the input to the model of each 
continuous variable was normalized (by subtracting the 
average and dividing it by the standard deviation), e.g., 
age, weight, height, and Body Mass Index (BMI) at the 
first visit, and the first trimester fasting glucose level. The 
database was divided into three partitions: training set 
(70%), validation set (10%), and testing set (20%).

Data augmentation
Data augmentation (DA) is a common method used 
in ML to improve training results [40, 41]. We gener-
ated a DA method on the training set adapted to the 
diagnosis of GDM by restricting the data values within 
physiological ranges for each input. The ranges for the 
creation of new data were given by a specialist in Obstet-
rics/Gynecology. The DA approach was used to create 
new patients for training the models based on the origi-
nal patients, changing some input values slightly as fol-
lows: i) Age: Newly created patients must be in a range 
of ± 2  years compared to the original ones; ii) First Tri-
mester Glycemia Test: New created patients must be in a 
range of ± 5 mg/dL only if the original patient has a result 
between 66 and 94 mg/dL, or over 105 mg/dL in this test; 
iii) Height: Newly created patients must be in a range 
of ± 3  cm compared to the original ones; iv) Weight: 
Newly created patients must be in a range of ± 5 kg com-
pared to the original ones; and v) BMI: The BMI was 
adapted to the changes of height and weight in the newly 
created patients. A new patient should not be created if 
the new BMI classification was different from that of the 
original patient. We used the BMI classification proposed 
by the WHO [42].

For the experiments we also considered a limited 
range for the DA range of values provided by a medical 
specialist. The original and the limited range values are 
shown in Table 2. Several cases for DA were determined 
by increasing the number of cases in the training set to 
generate a total number of cases reaching values of 120%, 
140%, 160%, 180% and 200%, relative to the original num-
ber of cases, which was 100%.
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Prediction models
Twelve different ML models and their hyperparameters 
were optimized to achieve the highest prediction per-
formance. Gaussian Naïve Bayes (GNB) and Bernoulli 
Naïve Bayes (BNB), Decision Trees (DT), Support Vec-
tor Machines (SVMs), Multi-Layer Perceptron (MLP), 
K-Nearest Neighbors (KNN), Logistic Regression (LR), 
Random Forest (RF), Extra Trees (ET) [43, 44], Bal-
anced Random Forest (BRF) [45], Gradient Boosting 
(GB), implemented in Extreme Gradient Boosting (XGB) 
[46], and Light Gradient Boosting Machine (LGBM) 
[47] approaches were used. All the models were trained 
with the training set computing over 3,000 combinations 

of hyperparameters. For example, for the SVM, various 
types of kernels were used; for the MLP, different com-
binations of layers and solver were used; for the models 
based on Trees, various types of “criteria” were used; 
and for ensemble, different numbers of estimators were 
employed, among many other hyperparameters.

Model implementation and hyperparameters
The models were implemented in Python 3.9.12 using 
Scikit-Learn [43], Imbalanced-Learn [45], XGBoost 
[46], and LGBM [47] libraries. The main hyperpa-
rameters used for each model are: GNB “var_smooth-
ing” [43]; BNB”alpha” [44]; DT”criterion”,”max_depth”, 

Table 1  Clinical variables of the patients. IQR, interquartile range

Variable/ Feature Non-GDM women (n = 1,382) 
Mean (IQR)

GDM women (n = 229) Mean 
(IQR)

Acquisition (GW)

Age 27.64 (23–32) 31.11 (27–36) 4–20

Pregnancy Type 1.01 (1–1) 1.02 (1–1) 4–20

Maternal Weight (first control) [kg] 71.62 (60–81) 81.77 (69–92) 4–20

Height [m] 1.59 (1.55–1.63) 1.59 (1.55–1.63) 4–20

BMI (Body Mass Index) (first control) 28.18 (24.03–31.64) 32.17 (28.16–35.83) 4–20

Gravidity 1.24 (0–2) 1.69 (0–2) 4–20

Parity 1.02 (0–2) 1.38 (0–2) 4–20

Abortions 0.22 (0–0) 0.32 (0–0) 4–20

Vaginal deliveries 0.79 (0–1) 1.03 (0–2) 4–20

Caesarean deliveries 0.22 (0–0) 0.34 (0–1) 4–20

Stillbirths 0.01 0.03 4–20

First trimester fasting glycemia [mg/dL] (1TFG) 77.22 (72–83) 87.12 (80–93) 4–12

OGTT (fasting) [mg/dL] 74.28 (69–81) 95.48 (86–101) 24–28

OGTT (2 h) [mg/dL] 99.39 (84–114) 142.87 (120–171) 24–28

(%) (%)
Tobacco 7.74 11.79 4–20

Alcohol 3.62 4.80 4–20

Illicit Drugs 2.89 0.87 4–20

Cardiac Disease 0.65 0.44 4–20

Biliary Disease 1.01 2.18 4–20

Urinary Tract Disease 2.32 4.80 4–20

Chronic kidney Disease 0.36 0.00 4–20

Inflammatory bowel Disease 0.07 0.44 4–20

Chronic lung diseases 2.31 3.05 4–20

Systemic lupus erythematosus /Antiphospholipid antibody 
syndrome

0.14 0.44 4–20

Psychiatric Disorders 1.88 3.49 4–20

Endocrine Disorders 0.36 0.87 4–20

Gynecological Disorders 3.40 7.42 4–20

Epilepsy 1.09 0.44 4–20

Insulin Resistance 2.46 6.99 4–20

Hypothyroidism 4.05 9.17 4–20

Chronic Hypertension 4.70 12.66 4–20

Antihypertensive Drugs 3.55 10.04 4–20
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“max_leaf_nodes”, “splitter” [43]; SVM “kernel”, 
“degree”, “decision_function_shape”, “C” [43]; MLP 
“solver”, “hidden_layer_sizes”, “activation”, “learning_
rate_init”, “max_iter”, “learning_rate”, “early_stopping” 
[43]; KNN “algorithm”, “leaf_size”, “p”, “n_neighbors” 
[43]; LR”C”,”solver” [43], RF, ET and BRF “n_estima-
tors”, “criterion” [43, 45]; XGB “n_estimators”, “eta”, 
“booster”, “gamma”, “max_depth” [46]; LGBM “n_esti-
mators”, “boosting_type”, “learning_rate” [47].

Table 3 shows all the hyperparameters that were used 
in the Grid Search, and the range of values analyzed.

Model evaluation
The results obtained with the combination of hyperpa-
rameters values were assessed in a fivefold cross vali-
dation (CV) [48] using data from the training set and 
performing a grid search on the hyperparameter val-
ues. Grid search allows finding near optimal values for 
the hyperparameters via multiple evaluations of various 
combinations for each one. An input selection [49] was 
performed to select the best variables to be used in the 
prediction task to improve the model results and reduce 
input redundant variables to each model. The input 

Fig. 1  Histogram showing the number of first maternal visits per gestational week

Table 2  Data augmentation (DA) range of values provided by the medical specialist, and a limited range of values both are used for 
the experiments

1TFG (First Trimester Fasting Glycemia Test)
*  The BMI value is computed according to the new values in height and weight. However, the new patient is created only if the classification of the BMI of the new 
patient is the same as that of the original patient. We use the classification, proposed by the WHO, that has also been used by other organizations [42]

DA\Columns Age (Years) 1TFG (mg/dL) Height (cm) Weight (kg) BMI

Expert original range  ± 2  ± 5  ± 3  ± 5 *

Limited Expert range  ± 1  ± 1  ± 1  ± 2 *
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variable selection was performed using 3 methods: F-test 
of ANOVA (Analysis of Variance), Chi-Square Test, and 
Mutual Information (also known as Information Gain) 
[43]. The models were trained, evaluated, and tested with 
various combinations of input variables selected by these 
3 methods. After adjustment with the training set, the top 
15% of the models ranked with the highest area under the 
ROC curve, AUCROC [50], were selected and assessed 
on the validation set. Models with the best results on 
the validation set were selected to obtain a good bal-
ance between high Sensitivity and good Specificity [50]. 
Finally, the selected models were assessed in the test set 
as a measure of generalization performance. The test set 
was not used in any previous step involving training or 
selection of the best models. Models were also trained 
using DA on the training and validation sets, but no DA 
was performed on the test set. The best results were cho-
sen using sensitivity and specificity as the main metrics 
of performance. The accuracy, sensitivity, specificity 

and recall macro are measured with a specific decision 
threshold, calculated by using the validation dataset 
to determine this threshold. The ROC curve is created 
based on the different decision thresholds that modify 
sensitivity, also known as True Positive Rate (TPR), as a 
function of the false positive (FP). The formulas are the 
following: Accuracy = (TP + TN)/(TP + FP + TN + FN), 
Sensitivity = TP/(TP + FN), Specificity = TN/(TN + FP), 
Recall Macro = (Sensitivity + Specificity)/2.

Results
Population characteristics
A total of 1,611 pregnant women were included in this 
study. The database was partitioned into 1,127 cases for 
the training set, 161 in the validation set, and 323 (39 
positive of GDM) were part of the test set. The preva-
lence of GDM was 14.21% (229/1,611). The input vari-
ables to the models are described in Table 1.

Table 3  Hyperparameters used in each model type

Hyperparameter Used by Ranges [lower bound, upped bound]

“var_smoothing” Gaussian Naïve Bayes [1e-10, 1e-7]

“alpha” Bernoulli Naïve Bayes [1e-10, 1]

“criterion” Decision Tree, Random Forest, Extra Trees, Balanced Random Forest “gini”, “entropy”

“max_depth” Decision Tree, Extreme Gradient Boosting [1, 20]

“max_leaf_nodes” Decision Tree [6, 384]

“splitter” Decision Tree “best”, “random”

“kernel” SVM “linear”, “poly”, “rbf”, “sigmoid”

“degree” SVM [1, 3]

“decision_function_shape” SVM “ovo”, “ovr”

“C” SVM, Logistic Regression [0.0001, 10]

“solver” Multi-Layer Perceptron “sgd”, “adam”

“hidden_layer_sizes” Multi-Layer Perceptron [8, 256], hidden layers: [1, 10]

“activation” Multi-Layer Perceptron “logistic”, “tanh”, “relu”

“learning_rate_init” Multi-Layer Perceptron [0.001, 0.1]

“max_iter Multi-Layer Perceptron 20000

“early_stopping” Multi-Layer Perceptron True, False

“learning_rate” Multi-Layer Perceptron “constant”, “invscaling”, “adaptive”

“algorithm” K-Nearest Neighbors “auto”, “ball_tree”, “kd_tree”, “brute”

“leaf_size” K-Nearest Neighbors [1, 30]

“p” K-Nearest Neighbors [1, 4]

“n_neighbors” K-Nearest Neighbors [1, 25]

“solver” Logistic Regression “newton-cg”, “lbfgs”, “liblinear”, “sag”, “saga”

“n_estimators” Random Forest, Extra Trees, Balanced Random Forest, Extreme Gradient 
Boosting, Light Gradient Boosting Machine

[10, 2000]

“eta” Extreme Gradient Boosting [0.001, 0.3]

“booster” Extreme Gradient Boosting “gbtree”, “gblinear”, “dart”

“gamma” Extreme Gradient Boosting [0, 1]

“boosting” Light Gradient Boosting Machine “gbdt”, “rf”, “dart”, “goss”

“learning_rate” Light Gradient Boosting Machine [0.001, 0.1]
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Variable selection
The most relevant 12 variables selected by the 3 methods: 
F-Test ANOVA, Chi-Square, and Mutual Information, 
are displayed on Table 4.

We selected the most important variables (features) 
in the dataset by removing irrelevant or redundant vari-
ables. This allows us to have a small number of variables 
which is useful for a clinical application. The methods 
used for this purpose are commonly employed in ML 
(F-test of ANOVA, Chi-Square Test, and Mutual Infor-
mation). This variable selection also avoids the overfitting 
problem and achieves improved performance compared 
to that of using all the features [49]. For example, varia-
bles such as Pregnancy Type or Stillbirth are not selected 
by the variable selection methods, but may decrease the 
performance of models such as Multi-Layer Perceptron. 
Additionally, one of the models used to select variables 
was the BRF (see Table 4). The ranking obtained with a 
nonlinear model, BRF, is similar to those obtained with 
statistical methods, confirming that these are the relevant 
variables.

Model performance
Table 5 shows the model type, number of input variables, 
whether or not DA was used, with “w/o DA” meaning 
that Data Augmentation is not used in this model, “DA 
LE”, meaning Data Augmentation w/Limited Expert 
range, “DA EO”, meaning Data Augmentation w/Expert 
original range, and the results of the following: Accuracy, 
Sensitivity, Specificity, Recall Macro, AUCROC, False 
Positives (FP), False Negatives (FN), and FP + FN. Table 5 
show the top 4 models for each sensitivity level with the 
model that has the highest AUCROC in bold type, for 
models with up to 12 variables. All these metrics were 
computed for each model in the test set. As mentioned in 

the Methods section, the test set was only used to test the 
generalization capacity of the models. The test set was 
not used to train or to select the hyperparameters of the 
models. On Table  5 we show the results of models that 
reached a sensitivity above 0.9231 in the test set (model 
numbers 1 to 16), while model numbers 17 to 36 show 
the results of models with sensitivity above 0.7949 but 
below 0.9231 in the test set. Models with high sensitivity 
allow minimizing FN when screening patients. Sensitivity 
is important since the main goal is to prevent the serious 
consequences of GDM that may occur in mothers and 
babies even several years after pregnancy. Our method 
allows identifying many possible models for various 
levels of sensitivity and specificity. For example, model 
numbers 29–32 on Table 5 all have a high sensitivity of 
0.82 and a specificity in the range 0.72–0.74, with accu-
racy between 0.73–0.75; AUCROC of 0.81; and Recall 
Macro between 0.77 and 0.78. A model could be selected 
from these ranges to have a good compromise between 
low numbers of FN and FP as is shown in the last column 
of Table 5.

Another possible choice of model could be model 
17 (Table  5) with sensitivity of 0.89 that requires just 5 
variables (1TFG, Age, BMI, Maternal Weight, and Gra-
vidity). This model reaches an accuracy of 0.65, a speci-
ficity of 0.62, Recall Macro of 0.76, and AUCROC of 0.82. 
Models 17–20 reach the same sensitivity of 0.89 with 
small changes in accuracy, specificity, Recall Macro and 
AUCROC. The best models for sensitivity 0.89 are all 
MLPs. It can be seen on Table 5, and on Fig. 2 that there 
are several choices of models for predicting various levels 
of sensitivity, with a trade-off on specificity.

Figure 2 shows two different views of the same surface 
plotting the model results for various values of the total 
number of errors (FP + FN), True Positives, and number 

Table 4  The most relevant twelve variables for GDM prediction were selected by using four methods: F-Test ANOVA, Chi-Square, 
Mutual Information and BRF

Ranking F-Test ANOVA Chi-Square Mutual Information BRF

1 1TFG 1TFG 1TFG 1TFG

2 BMI Maternal Weight BMI BMI

3 Maternal Weight BMI Age Maternal Weight

4 Age Age Antihypertensive Drugs Age

5 Chronic Hypertension Gravidity Maternal Weight Height

6 Gravidity Chronic Hypertension Inflammatory Bowel Disease Gravidity

7 Antihypertensive Drugs Parity Illicit Drugs Parity

8 Parity Antihypertensive Drugs Chronic Kidney Disease Vaginal Deliveries

9 Insulin Resistance Abortions Urinary Tract Disease Abortions

10 Hypothyroidism Vaginal Deliveries Insulin Resistance Cesarean Deliveries

11 Vaginal Deliveries Insulin Resistance Psychiatric Disorders Hypothyroidism

12 Abortions Hypothyroidism Cardiac Disease Chronic Hypertension
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of input variables for each model. Several choices of the 
models are available for reaching high sensitivity (low 
FN), and high specificity (low FP) with a small number 
of input variables. On the surface plotted in Fig. 2 the red 
dots represent the best models in bold type from Table 5 
with sensitivity above 0.92 (model numbers 1, 5, 9, and 
13), and the yellow dots represent the best models from 
Table 5 with sensitivity above 0.79 but below 0.92 (model 
numbers 17, 21, 25, 29, and 33).

Figure 3 shows the ROC curves for each of the 9 best 
models with a fixed sensitivity starting at sensitivity of 1 
(a), up to a sensitivity 0.79 (d). These best models for each 
sensitivity level appear in bold type in Table 5. Figure 3(a) 
shows the ROC curves for the best models with sensitivi-
ties of 1, 0.9744 and 0.9487. Figure 3(b) shows the ROC 
curves of the best models with sensitivities of 0.9231, 
0.8974 and 0.8718. Figure 3(c) shows the ROC curves of 
the best models with sensitivities of 0.84, 0.82, and 0.79. 
Finally, Fig. 3(d) shows the ROC curves for model num-
ber 29 in Table 5 with the best recall macro (gray), and 
a comparison with the same model having DA (cyan), 
and the same model with a lower number of variables 
(pink). This model, number 29, has the lowest number of 
FP + FN.

Table  6 shows the best models for different sensi-
tivity levels, with more than 12 input variables. It can 

be observed that models 38, 42, 43 and 45 reached a 
slightly better FP + FN than our best selected mod-
els shown on Table  5. Nevertheless, the number of 
required input variables is more than doubled. For 
example, model 25 requires 6 input variables while 
model 43 requires 15 input variables for the same sen-
sitivity. A much larger number of input variables would 
be more difficult to implement in clinical practice.

In the clinical context, one of the main focuses of the 
GDM specialists is the balance between sensitivity and 
specificity. High sensitivity avoids errors in detecting 
patients with the illness (low FN), while high speci-
ficity decreases the FP number. Tables  5 and 6 show 
a trade-off between sensitivity and specificity in our 
results, yielding a high, but not maximum, AUCROC. 
The models are ordered on Table 5, first by a sensitivity 
level, and then other selected metrics, such as specific-
ity and AUCROC. The main metrics used in the final 
selection of our models were sensitivity and specificity. 
We also used a Balanced Random Forest (BRF) model 
that had good performance on imbalanced datasets, 
that achieved good performance, although not better 
than that of the models presented on Tables 5 and 6.

On Table  S1 (Additional file  1), we show the Mean 
AUCROC, 95% confidence interval, and standard 
deviation (STD) of the different models presented on 

Fig. 2  Surface with all models available, including various values of hyperparameters, for various levels of error (FP + FN), True Positives, and number 
of variables. The red dots represent the best models in bold type from Table 5 with sensitivity above 0.9231 (model numbers 1, 5, 9, and 13), and the 
yellow dots represent the best models from Table 5 with sensitivity above 0.7949 but below 0.9231 (model numbers 17, 21, 25, 29, and 33)
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Tables  5 and 6, calculated by using ten different seeds 
for the initialization of the models.

Table  7 presents performance comparisons among 
the models with Data Augmentation (w/DA), and with-
out Data Augmentation (w/o DA). The comparisons 
include the same models.

Discussion
The principal findings of this study are: i) Early prediction 
of GDM within early stages of pregnancy using regular 
examinations/exams; ii) The development and optimiza-
tion of twelve different ML models and their hyperpa-
rameters to achieve the highest prediction performance; 

iii) a data augmentation method is proposed to allow 
reaching excellent GDM prediction results with various 
models; and iv) several model results are, in general, bet-
ter than previously reported methods generated using 
similar input datasets, and the models studied allow the 
selection of several alternatives to achieve a desired sen-
sitivity and specificity.

A recent study by Pillay and co-workers [51] reported 
sensitivity and specificity data for two-step oral glucose 
challenge tests with 140- and 135-mg/dL at or after 
24  weeks of gestation [51]; these two cut-off levels had 
sensitivities of 82% and 93%, respectively, and specifici-
ties of 82% and 79%, respectively, when assessed against 

Fig. 3  a ROC curves of the best models with sensitivities of 1 (MLP 12 variables), 0.9744 (MLP 8 variables), and 0.9487 (SVM 5 variables). b ROC 
curves of the best models with sensitivities of 0.9231 (SVM 5 variables), 0.8974 (MLP 5 variables), and 0.8718 (MLP 7 variables). c ROC curves of the 
best models with sensitivities equal to 0.8462 (MLP 6 variables), 0.8205 (SVM 12 variables), and 0.7949 (SVM 7 variables). d ROC curve for model 
number 29 in Table 5 with the best Recall Macro (gray, SVM 12 variables), and a comparison of the same model with Data Augmentation (cyan), and 
a model with a lower number of variables (pink, SVM 7 variables)



Page 12 of 18Cubillos et al. BMC Pregnancy and Childbirth          (2023) 23:469 

Carpenter and Coustan criteria [51]. Interestingly, the 
authors also concluded that although the application of 
the one-step (IADPSG) protocol significantly increased 
the likelihood of GDM detection (11.5% vs. 4.9%; five 
randomised control trials, 25,772 subjects), there was no 
improvement in health outcomes [51]. It is possible that 
the use of the IADPSG protocol may be over diagnos-
ing risk in the assessed populations and as a result the 
deployment of interventions to patients that would oth-
erwise go untreated conveyed no benefit. A second inter-
pretation is that the interventions targeted to women 
detected with the one-step test were ineffectual when 
deployed at or towards the end of the second trimester. In 
keeping with the potential benefit of a ML-based system 
allowing for earlier GDM risk prediction, it is tempting to 
speculate that earlier identification and intervention allo-
cation may improve treatment benefit.

Comparison with state of the art
In the present study, the best performing models (i.e., 
SVM 12; Table 5) using data collected prior to 20 weeks 
of gestation had a sensitivity of 82% and specificity of 
74%, coming quite close to that of the two-step protocol 
widely used in the United States at later gestations. In our 
study, we developed a group of 12 models for early diag-
nosis of GDM, with data that are commonly acquired at 
the early stages of pregnancy during prenatal care visits 
to gynecologists/obstetricians. The ease of data collec-
tion should facilitate the future of these models in clinical 
practice. Another important consideration is that sensi-
tivity is crucial since the main goal is to prevent serious 
consequences of GDM for mothers and babies, many of 
which will impact them for several years after pregnancy. 
In cases of lower specificity (higher FP), additional tests 
could be used to improve diagnosis, although this would 
come with additional cost, inconvenience, and risk. Also, 

in many cases the main treatment involves diet and exer-
cise which are not harmful. From our variable selection 
methods, the most important variables for GDM diag-
nosis were related to glucose metabolism (first trimester 
fasting glycemia), physical status (weight and BMI), age, 
and hypertension. The use of DA had a positive effect 
in most models, improving specificity up to 51.43% and 
AUCROC up to 3.70% with the same sensitivity. The best 
model results, for each sensitivity level, was reached in 
7/9 cases with DA and in 2/9 with no DA.

The limited public availability of datasets for inform-
ing previously published work makes direct comparisons 
of model performance difficult [20–35]. Nevertheless, a 
general assessment can be undertaken by comparing the 
result ranges from different metrics obtained on various 
datasets. However, there are important aspects, such as 
characteristics of the population, and diagnostic criteria, 
that vary between countries/regions in the different stud-
ies analyzed, and therefore, these aspects should be con-
sidered when comparing the different datasets. Table  8 
shows a comparison of model results from the present 
study against those of recent studies assessing ML-driven 
diagnosis of GDM risk. In general, our models performed 
better in AUCROC than comparable models generated 
with similar input variables and the same or similar GDM 
diagnosis criteria [20–22, 25–28, 30, 31]. As explained 
previously, sensitivity is important due to the possible 
adverse effects of GDM on the mother and baby later in 
life. Other models [20, 22–24, 29, 32–35] that required 
additional complex data are not listed in Table 8. In some 
cases, such as those presented in the meta-analysis [52], 
more complex variables were employed on the mod-
els such as ultrasound screening data, or biochemical 
data of liver/renal/coagulation function at the prenatal 
visit. For example, a comparison between our model 33 
SVM 7 Variables DA LE (Table 8), and the work of Wu 

Table 6  Best models for different sensitivity levels, with a number of input variables > 12

Abbreviations: w/o DA No data augmentation, DA LE Data augmentation w/limited expert range, DA EO Data augmentation w/expert original range

Model Model Type Number 
of input 
variables

Data 
Augmentation

Accuracy Sensitivity Specificity Recall Macro AUC ROC FP FN FP + FN

37 MLP 15 DA LE 0.3003 1 0.2042 0.6021 0.8210 226 0 226

38 SVM 15 w/o DA 0.5697 0.9744 0.5141 0.7442 0.7872 138 1 139

39 MLP 13 DA LE 0.5820 0.9487 0.5317 0.7402 0.8093 133 2 135

40 SVM 15 w/o DA 0.6099 0.9231 0.5669 0.7450 0.7872 123 3 126

41 MLP 13 w/o DA 0.6409 0.8974 0.6056 0.7515 0.8152 112 4 116

42 MLP 14 DA LE 0.7059 0.8718 0.6831 0.7774 0.7968 90 5 95

43 MLP 15 DA LE 0.7214 0.8462 0.7042 0.7752 0.7988 84 6 90

44 SVM 15 DA EO 0.7337 0.8205 0.7218 0.7712 0.8125 79 7 86

45 SVM 15 DA EO 0.7461 0.7949 0.7394 0.7672 0.8125 74 8 82
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and colleagues [20] (Table  8) yielded a higher sensitiv-
ity (13.55%), and a higher specificity (6.14%). Our model 
17 MLP 5 Variables DA EO (Table 8) vs. Pintaudi et  al. 
[28] (Table  8), reached a similar sensitivity but had an 
improved specificity (56.70%). A different criterion 
for GDM diagnosis was by Kumar and coworkers [31] 
(WHO, 1999), with which GDM was diagnosed if fasting 
OGTT ≥ 126  mg/dL and/or 140  mg/dL in a 2  h OGTT. 
Another model was implemented by them [31] using the 
same GDM diagnosis criterion as ours, IADPSG/HAPO, 
reaching an AUCROC of 0.73, with a fivefold stratified 
CV. ML models have also been applied for predicting 
Diabetes Mellitus [53].

Table 9 shows a list of the input variables used in each 
of the best models selected, including those used for 
comparison, and those developed and selected by the 
authors. It can be observed that some of the best solu-
tions require only five input variables. When choosing 
these models for a clinical application, only 5–7 variables 
will need to be measured in each patient to diagnose 
GDM with these models. This will facilitate the possible 
application of these models in clinical practice. Develop-
ing accurate ML models for predicting GDM is an impor-
tant step towards implementing early prediction and 
treatment strategies for patients. The next step should be 

to prospectively apply them in a clinical setting to vali-
date and evaluate their performance.

In the present study, twelve ML models and their 
hyperparameters were optimized for early (20  weeks of 
gestation or earlier) GDM with high sensitivity, speci-
ficity, AUCROC, and Recall Macro. The models could 
predict GDM with a good degree of accuracy before 
20 weeks of gestation, and with variables that are widely 
available from screening examinations The variables 
required by most of the models were age, weight, BMI, 
and FPG which is consistent with previous publications 
[20–22, 25–28, 30, 31]. Variable selection was performed 
by three methods and results show that several models 
reached good performance with as few as 5–7 input vari-
ables, while other models required more, including up to 
12 variables. Choosing models with high GDM predic-
tion performance, a low number of input variables, and 
widely available variables will facilitate the possible appli-
cation of these models in low income settings. Although 
patient data from previous publications are often not 
available, comparing the results obtained for various 
metrics show that, in general, our models performed 
favorably in comparison with the existing literature. In 
conclusion, our data demonstrate that ML-analysis of 
patient data sets from early pregnancy may serve as a 

Table 8  Results of top models for various levels of sensitivity compared to those from the published literature using similar input 
variables and the same GDM diagnosis criterion

* Values calculated by us from the results displayed, using the formula of recall macro (sensitivity + specificity)/2
** Deterministic Model

Ours (model number-Table 5)

Note: Datasets used in some previous studies are different and not publicly available

Models Accuracy Sensitivity Specificity Recall Macro AUC ROC

DNN, 7 Variables [20] - 0.7 0.69 0.695* 0.77

LR, 5 Continuous Variables [21] - 0.61 0.80 0.705* 0.766

LGBM, 9 questions (Variables) [22] - - - - 0.799

RF, Dimension Reduction, 6 Variables [25] 0.789 0.651 0.813 0.732* 0.777

LR, 4 Variables [26] - - - - 0.70

1 Variable ** [27] - 0.490 0.676 0.583* 0.608

RECPAM, 3 Variables [28] - 0.89 0.40 0.645* -

2 Variables ** [30] - 0.51 0.81 0.660* 0.71

NN, 4 Variables, IADPSG Criteria [31] - - - - 0.73

Ours 1 MLP 12 Variables No DA 0.3994 1 0.3169 0.6585 0.8189

Ours 5 MLP 8 Variables DA LE 0.5511 0.9744 0.4930 0.7337 0.8002

Ours 9 SVM 5 Variables DA EO 0.6068 0.9487 0.5599 0.7543 0.8234

Ours 13 SVM 5 Variables DA EO 0.6130 0.9231 0.5704 0.7468 0.8234

Ours 17 MLP 5 Variables DA EO 0.6594 0.8974 0.6268 0.7621 0.8199

Ours 21 MLP 7 Variables DA LE 0.6873 0.8718 0.6620 0.7669 0.8160

Ours 25 MLP 6 Variables DA LE 0.7090 0.8462 0.6901 0.7681 0.8142

Ours 29 SVM 12 Variables No DA 0.7554 0.8205 0.7465 0.7835 0.8135

Ours 33 SVM 7 Variables DA LE 0.7399 0.7949 0.7324 0.7636 0.8143
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cost-effective and efficacious means of detecting GDM 
risk early in pregnancy.

We described all steps required to implement, train 
and test the models. In particular, we used a test parti-
tion that is different from the training and validation 
partitions, to improve the generalization capacity of the 
models. Many of the previous reported work did not 
state explicitly using an independent partition for testing 
[20, 21, 24–32, 35]. This study provides a valuable contri-
bution by utilizing and comparing a broad range of ML 
models (12), which differs from many other studies that 
often use only one type of model, such as Logistic Regres-
sion. Additionally, various metrics have been employed 
to compare the performance of each model, including a 
wide range of variables that could potentially be selected 
for clinical implementation. This approach allows for a 
more comprehensive assessment of the potential utility 
of different ML models in predicting GDM and facilitates 
the identification of the most effective models for future 
clinical implementation.

As with any study of this nature, the findings need to be 
assessed in light of the ground-truth data set from which 
they were drawn. For the present study, we used a single 
center population drawn from a socio-economically vul-
nerable medical center in Santiago, Chile. Accordingly, a 
cautious approach should be taken in extrapolating these 
findings to a wider socio-economic grouping, and to the 
maternal situation in other regions. The strengths of this 
study include a well-characterized pregnancy cohort and 
robust data collection. Future iterations of this work will 
involve the cross-population analysis of GDM risk and 
the comparison of predictive outcomes from different 
populations to assess the broad applicability of model 
performance. While the variables used in the differ-
ent ML models show promising predictive capacity for 
GDM, the addition of other inputs such as biomarkers 
could potentially further improve their performance. As 
such, future studies may consider incorporating addi-
tional data sources to enhance the accuracy of GDM pre-
diction models.

Table 9  Input variables used in each model including those used for comparison, and those of the best models selected by our 
method

* Deterministic model

Ours (model number from Table 5)

Models Input Variables

DNN, 7 Variables [20] Age, Previous GDM, Family history of diabetes in a first-degree relative, Multiple pregnancy, FPG, HBA1C, 
Triglyceride

LR, 5 Continuous Variables [21] Age, pre-pregnancy BMI, FPG and Triglyceride

LGBM, 9 questions (Variables) [22] Age, Weight and Height, Familiar history of diabetes in first-degree relatives, High cholesterol, Miscarriage, 
PCOS, Pre-diabetes, Heart Diseases, GDM or High BP before current pregnancy, HBA1C, Previous birth (Yes or 
No), if yes, number of times and GCT or OGTT in that pregnancy if they are available

RF, Dimension Reduction, 6 Variables [25] Age, pre-pregnancy BMI, abdomen circumference in the first trimester, gravidity, PCOS, irregular menstrua-
tion and family history of diabetes

LR, 4 Variables [26] Age, BMI, FPG, Familiar history of diabetes in first-degree relatives

1 Variable * [27] FPG

RECPAM, 3 Variables [28] BMI, FPG, Familiar history of diabetes in first-degree relatives

2 Variables * [30] BMI, fasting glucose

NN, 4 Variables, IADPSG Criteria [31] Mean arterial blood pressure, Age, Previous history of GDM, Ethnicity

Ours 1 MLP 12 Variables No DA Age, Weight, BMI, Illicit Drugs, Cardiac Diseases, Urinal Tract Diseases, Psychiatric Disorders, Chronic Kidney 
Diseases, Inflammatory bowel disease, Insulin Resistance, Use of Antihypertensive drugs, FPG

Ours 5 MLP 8 Variables DA LE Age, Weight, BMI, Illicit Drugs, Chronic Kidney Diseases, Inflammatory bowel disease, Use of Antihypertensive 
drugs, FPG

Ours 9 SVM 5 Variables DA EO Age, Weight, BMI, Gravidity, FPG

Ours 13 SVM 5 Variables DA EO Age, Weight, BMI, Gravidity, FPG

Ours 17 MLP 5 Variables DA EO Age, Weight, BMI, Gravidity, FPG

Ours 21 MLP 7 Variables DA LE Age, Weight, BMI, Gravidity, Parity, Chronic Hypertension, FPG

Ours 25 MLP 6 Variables DA LE Age, Weight, BMI, Inflammatory bowel disease, Use of Antihypertensive drugs, FPG

Ours 29 SVM 12 Variables No DA Age, Weight, BMI, Illicit Drugs, Cardiac Diseases, Urinal Tract Diseases, Psychiatric Disorders, Chronic Kidney 
Diseases, Inflammatory bowel disease, Insulin Resistance, Use of Antihypertensive drugs, FPG

Ours 33 SVM 7 Variables DA LE Age, Weight, BMI, Gravidity, Chronic Hypertension, Use of Antihypertensive drugs, FPG
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These findings are of particular importance given the 
increasing prevalence of GDM in the maternal popula-
tion and the significant impacts (both patient well-being 
and financial) that derive from poorly controlled glucose 
levels in pregnancy. For example, recent modeling from 
the United States suggests that, in 2014, the short-term 
costs of GDM were $1.8 billion [54]. The cost of treat-
ment for T2DM is routinely around $3,500 per year [55]. 
Given estimates that one in six pregnancies are impacted 
by GDM, even a small improvement in outcomes deriv-
ing from early risk identification and timely intervention 
would yield profound public health benefits and health 
system cost savings.

Conclusions
The principal findings of our study are: Early prediction 
of GDM within early stages of pregnancy using regular 
examinations/exams; the development and optimization 
of twelve different ML models and their hyperparameters 
to achieve the highest prediction performance; a novel 
data augmentation method is proposed to allow reaching 
excellent GDM prediction results with various models. 
Several model results are, in general, better than previ-
ously reported methods generated using similar input 
datasets, and the provided results allow the selection of 
several alternatives to achieve a desired sensitivity and 
specificity. Choosing models with high GDM prediction 
performance, a low number of input variables, and widely 
available variables will facilitate the possible application 
of these models in most settings.
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