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Introduction
Polycystic ovary syndrome (PCOS) is a common repro-
ductive endocrine metabolic disease in women of 
childbearing age and is often characterised by chronic 
anovulation and hyperandrogenaemia. Its clinical mani-
festations include menstrual disorders, hirsutism, acne, 
and polycystic ovarian changes, and these symptoms can 
be accompanied by metabolic diseases, such as obesity, 
insulin resistance (IR), and dyslipidaemia [1]. However, 
the pathogenic mechanisms of PCOS are still unclear. In 
addition to the ovarian-pituitary-hypothalamic-gonadal 
axis, studies of PCOS pathogenesis must also consider 
ovarian local cytokines, immunology, and genetics.

BMC Pregnancy and Childbirth

†Mengge Gao and Xiaohua Liu contributed equally to this work.

*Correspondence:
Xingming Zhong
xingmingzh@126.com
1NHC Key Laboratory of Male Reproduction and Genetics, Guangdong 
Provincial Reproductive Science Institute (Guangdong Provincial Fertility 
Hospital), Guangzhou 510600, China
2Department of Public Health and Preventive Medicine, School of 
Medicine, Jinan University, Guangzhou, Guangdong Province, China
3Department of Clinical Nutrition, Huadu District People’s Hospital, 
Southern Medical University, 48 Xinhua Road, Huadu, Guangzhou 510800, 
Guangdong, China

Abstract
Background Patients with polycystic ovary syndrome (PCOS) exhibit a chronic inflammatory state, which is often 
accompanied by immune, endocrine, and metabolic disorders. Clarification of the pathogenesis of PCOS and 
exploration of specific biomarkers from the perspective of immunology by evaluating the local infiltration of immune 
cells in the follicular microenvironment may provide critical insights into disease pathogenesis.

Methods In this study, we evaluated immune cell subsets and gene expression in patients with PCOS using data 
from the Gene Expression Omnibus database and single-sample gene set enrichment analysis.

Results In total, 325 differentially expressed genes were identified, among which TMEM54 and PLCG2 (area under the 
curve = 0.922) were identified as PCOS biomarkers. Immune cell infiltration analysis showed that central memory CD4+ 
T cells, central memory CD8+ T cells, effector memory CD4+ T cells, γδ T cells, and type 17 T helper cells may affect the 
occurrence of PCOS. In addition, PLCG2 was highly correlated with γδ T cells and central memory CD4+ T cells.

Conclusions Overall, TMEM54 and PLCG2 were identified as potential PCOS biomarkers by bioinformatics analysis. 
These findings established a basis for further exploration of the immunological mechanisms of PCOS and the 
identification of therapeutic targets.
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Recent studies have found that the inflammatory 
immune mechanism is closely related to the occurrence 
and development of PCOS. Under physiological con-
ditions, appropriate inflammatory stress is conducive 
to the growth and development of oocytes [2, 3]. How-
ever, under pathological conditions, the inflammatory 
response is enhanced, the development of oocytes may 
be limited, and the further development of chronic 
inflammation leads to decreased ovum quality, thereby 
affecting ovulation [4]. Systemic and ovarian cytokines 
(e.g., tumour necrosis factor [TNF]-α, interleukin [IL]-
6, and IL-18) can change the local microenvironment 
in the ovary, regulate ovarian function, induce excessive 
androgen production, and promote IR through various 
mechanisms [5]. Inflammation in the follicular micro-
environment may be involved in the dysfunction of the 
hypothalamic-pituitary-gonad axis and the occurrence 
and development of follicular dysplasia.

In studies of the distribution of white blood cells in the 
ovary and cytokine mRNA expression in the follicular 
fluid (FF) of patients with PCOS and non-PCOS women 
undergoing fertilisation embryo transfer in vitro, Wu et 
al. [6] showed that T lymphocytes play important roles 
in the local pathological mechanisms of PCOS. T lym-
phocytes secrete various inflammatory and immuno-
modulatory molecules that participate in the regulation 
of ovarian function. T-cell subsets have also been shown 
to be dysregulated in the peripheral blood and ovaries of 
patients with PCOS owing to disruption of sex hormone 
levels in these patients [7].

The pathogenesis of PCOS is multifactorial and com-
plex. In addition to reproductive abnormalities, the 
pathogenic mechanisms also include interactions 
between the immune system and reproduction, result-
ing in a variety of changes to cytokines and immune 
cells. Therefore, evaluation of immune cell infiltration 
in patients with PCOS based on changes in the expres-
sion levels of genes may be essential for elucidating the 
immunological mechanisms of PCOS and identification 
of novel biomarkers.

In this study, we aimed to identify the roles of immune 
cell subsets and related gene expression changes in the 
pathogenesis of PCOS. We downloaded four PCOS data-
sets from the Gene Expression Omnibus (GEO) database 
and analysed differentially expressed genes. Two differ-
ent machine learning algorithms were then used to fur-
ther identify PCOS biomarkers. We also studied PCOS 
from the perspective of immunology using single-sample 
gene set enrichment analysis (ssGSEA) to evaluate the 
differences in the compositions of 28 immune cell sub-
sets between patients with PCOS and healthy women of 
reproductive age. In addition, the relationships between 
PCOS biomarkers and immune cell infiltration were 

studied to improve our understanding of the immunolog-
ical mechanisms of PCOS occurrence and development.

Materials and methods
Data downloading
First, the “GEOquery” package in R software (version 
3.6.1, http://r-project.org/) was used to download the 
PCOS expression profile datasets GSE84958, GSE106724, 
GSE137684, GSE114419 and GSE193812 from the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/). A 
description of all databases is presented in Supplemen-
tary Table S1.

Data preprocessing
We combined the GSE84958, GSE106724, GSE137684, 
and GSE114419 gene expression matrices, and interbatch 
differences were removed using the “sva” package [8]. 
Boxplots [9] and two-dimensional principal component 
analysis (PCA) cluster plots were used to visualise the 
effects of removing interbatch differences. The flow chart 
for this study is shown in Supplementary Figure S1.

Evaluation of the distribution of immune cell subtypes
ssGSEA was used to quantify the infiltration of immune 
cells in patients with PCOS. The abundances of the fol-
lowing 28 types of immune cells were obtained from the 
R package “GSVA” [10]: activated B cells, activated CD4+ 
T cells, activated CD8+ T cells, activated dendritic cells 
(DCs), CD56+ natural killer (NK) cells, CD56− NK cells, 
central memory CD4+ T cells, central memory CD8+ T 
cells, effector memory CD4+ T cells, effector memory 
CD8+ T cells, eosinophils, γδT cells, immature B cells, 
immature DCs, mast cells, myeloid inhibitory cells, 
memory B cells, monocytes, NK cells, NK T cells, neu-
trophils, plasmacytoid DCs, macrophages, regulatory 
T cells (Tregs), follicular helper T cells, type 1 T helper 
(Th1) cells, type 17 T helper (Th17) cells, and type 2 T 
helper (Th2) cells.

Screening of differentially expressed genes (DEGs)
DEGs were filtered through the “limma” package [11]. 
The DEG threshold point was an adjusted P value less 
than 0.05 and a |log2 fold change| greater than 0.5.

Functional enrichment analysis
The gene names of DEGs were converted to gene IDs 
using the R package “org.hs.eg.db”. Gene ontology (GO), 
Kyoto Encyclopaedia of Genes and Genomes [12, 13] 
(KEGG), and disease ontology (DO) analyses were per-
formed using the R package “clusterProfiler” [14], and 
p value correction from multiple trials was performed 
using the BH method. GO, DO, and KEGG pathways 
with significant enrichment of DEGs were screened. 
GO annotations of DEGs included cellular components, 
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biological processes, and molecular functions, which 
were used to analyse the functional enrichment of DEGs.

Screening of biomarkers
Protein-protein interaction (PPI) network results for 
DEGs were obtained using STRING, and LASSO regres-
sion and BORUTA algorithm analyses were used for 
feature selection to screen biomarkers of PCOS. The 
LASSO algorithm was implemented through the R pack-
age “glmnet” [15]. The BORUTA algorithm was imple-
mented through the R package “Boruta” [16]. Similar to a 
random forest classifier, this approach reduced the error 
caused by random fluctuation and correlation by adding 
randomness to the system and collecting results from a 
random sample set. The candidate biomarkers obtained 
using the two methods were intersected using a Venn 
diagram to extract the final candidate biomarkers.

Correlation analysis between biomarkers and immune cells
Spearman rank correlation analysis was used to investi-
gate the correlations between the selected biomarkers 
and the level of immune cell infiltration.

Analysis of the predictive value of biomarkers
In order to determine the predictive value of biomarkers 
for PCOS, receiver operating characteristic (ROC) curve 
analysis was carried out to explore the sensitivity and 
specificity of candidate biomarkers for PCOS prediction. 
Screening of the ROC area under the curve (AUC) values 
identified the dataset that could distinguish PCOS from 

normal control samples. An external data set and some 
peripheral blood samples were then used for testing. In 
this study, 6 PCOS patients who visited Guangdong Pro-
vincial Fertility Hospital from March 2022 to September 
2022 were included and 6 women of reproductive age 
who visited the hospital and passed physical examina-
tion during the same period were included as the control 
group. Using peripheral blood RNA as template, cDNA 
was synthesized using Evo M-MLV reverse transcription 
reagent premix configuration system. Three groups of 
replicates were set for each sample, 2-ΔΔCT formula was 
used to calculate the relative change of each gene expres-
sion in each sample.

Statistical analysis and graphical visualisation
All analyses in this paper were carried out by R version 
4.0.5. The analysis results were visualised using the R 
packages “corrplot” [17], “ggplot2” [18], and “pheatmap” 
[19] and spliced with “patchwork”.

Results
Data preprocessing
In this study, we selected 83 samples from four differ-
ent datasets, including 34 PCOS samples and 49 normal 
control samples. A two-dimensional PCA diagram and 
boxplot showed the effects before and after treatment 
(Fig. 1A–D). The results demonstrated that clustering of 
the two groups of samples was more obvious after nor-
malisation, indicating that differences between batches 
had been eliminated and that the samples were from reli-
able sources.

Fig. 1 Two-dimensional PCA and boxplot before and after removing interbatch effects. (A, B) Data before removing interbatch effects in datasets 
GSE84958, GSE106724, GSE114419, and GSE137684. (C, D) Data after removing interbatch effects
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Fig. 3 Analysis of DEGs. (A) Volcano diagram of DEGs between patients with PCOS and normal controls. Green represents significantly downregulated 
genes in the PCOS group, red represents significantly upregulated genes in the PCOS group, and black represents genes with no difference between 
groups. (B) Heat map of the top 50 genes with larger absolute value differences in expression between sample groups. The colour of the block represents 
the normalised expression of corresponding genes in the sample

 

Fig. 2 Differences in immune cell infiltration between patients with PCOS and normal controls. (A) Differences in the enrichment of immune cells 
between samples from the two groups. The normalised relative abundances of immune cells in each sample are shown, with red representing high 
enrichment degree and green representing low enrichment degree. (B) Correlations of 28 types of immune cells in the dataset. Colour blocks with a cor-
relation coefficient p value greater than 0.05 in the upper part of the graph are not displayed; red represents a positive correlation, and green represents a 
negative correlation, with darker colour indicating a stronger correlation. (C) Differences in the enrichment of 28 types of immune cells between patients 
with PCOS and normal controls. Results with p values less than 0.05 are indicated in red, and immune cells with different enrichment degrees on the 
axis are indicated as red or blue. Red indicates a significant increase in the PCOS group, whereas blue indicates a significant decrease in the PCOS group
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Evaluation of the distributions of immune cell subtypes
ssGSEA revealed differences in the compositions of 
28 immune cell subsets in the follicular microenviron-
ment between healthy controls and patients with PCOS 
(Fig.  2A and Supplementary Table S2). Spearman co-
expression analysis of 28 types of immune cells (Fig. 2B 
and Supplementary Table S3) showed that macrophages 
were significantly positively correlated with activated 

CD8+ T cells. Myeloid inhibitory cells were positively 
correlated with Tregs, Th1 cells, and activated DCs. Cen-
tral memory CD4+ T cells were negatively correlated 
with Th2 cells. Additionally, compared with normal con-
trols, patients with PCOS showed increased infiltration 
of central memory CD4+ T cells, central memory CD8+ 
T cells, and γδT cells, but decreased infiltration of effec-
tor memory CD4+ T cells and Th17 cells (Fig. 2C).

Fig. 4 Functional correlation analysis of DEGs. (A) Top 20 results from GO enrichment analysis of DEGs between the PCOS and normal control groups. 
The shape of the pattern indicates the annotation of GO, the size of the pattern indicates the number of enriched genes, and the colour of the pattern 
indicates the p value. (B) Top 20 results from KEGG enrichment analysis of DEGs between the PCOS and normal control groups. The size of the pattern 
indicates the number of enriched genes, and the colour of the pattern indicates the p value. (C) Partial results from DO analysis of DEGs between the PCOS 
and normal control groups. The abscissa indicates the number of enriched genes, and the colour indicates the p value
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Screening of DEGs
The above 83 samples were used to identify DEGs. In 
total, 325 DEGs were obtained, including 148 upregu-
lated genes and 177 downregulated genes (Supplemen-
tary Table S4, Fig. 3A and B).

Functional enrichment analysis
DEG functional enrichment analysis was performed 
using GO, KEGG, and DO analysis. GO analysis showed 
that DEGs were mainly related to signal transduction and 
biological functions of cell activities, such as hormone 
receptor binding and ATP-dependent microtubule motil-
ity (Fig. 4A and Supplementary Table S5). KEGG analy-
sis confirmed that DEGs were mainly related to growth 
metabolic signalling pathways, such as the Hippo signal-
ling pathway, vesicle transportation, and vitamin diges-
tion and absorption (Fig.  4B and Supplementary Table 
S6). DO analysis showed that DEGs were mainly related 
to autosomal recessive diseases and were also related 
to neurological and systemic haematological diseases 
(Fig. 4C and Supplementary Table S7).

Screening of biomarkers
PPI network results for DEGs were obtained using 
STRING (Supplementary Figure S2). LASSO regression 
analysis was used to screen out 29 candidate biomark-
ers (Fig.  5A and B and Supplementary Table S8), the 
BORUTA algorithm was used to extract genes with high 
importance, and 55 candidate biomarkers were obtained 
(Fig.  5C and Supplementary Table S6). After analysis of 
the overlap of biomarkers obtained using the two algo-
rithms, 20 candidate biomarkers were finally obtained 
(Fig. 5D and Supplementary Table S8), as follows: AAK1, 
AIFM1, CCDC114, PTPRN2, TMEM54, CDH15, CXCR1, 
ABI3BP, FAM149A, SLC9A3R1, ISPD, VIT, TEAD3, 
BAK1, PSMD3, FUT11, PLCG2, CFP, TRAPPC6B, and 
JDP2. Most genes were upregulated in PCOS, except 
AAK1, CCDC114, PTPRN2, CDH15, ISPD, FUT11, and 
CFP (Fig. 6A and B). Correlation analysis between genes 
showed that the CXCR1 gene was significantly posi-
tively correlated with SLC9A3R1 and PSMD3, whereas 
CCDC114 was significantly negatively correlated with 
JDP2 (Fig.  6C and Supplementary Table S9). Moreover, 
correlation analysis between the candidate biomarkers 

Fig. 5 Screening of PCOS biomarkers. (A, B) LASSO regression analysis was used to screen for biomarkers. Different coloured lines represent different 
genes. (C) BORUTA algorithm for feature variable screening. (D) The intersection results of the two algorithms were obtained using a Venn diagram to 
yield candidate biomarkers
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and 28 types of immune cells showed that AIFM1 
was negatively correlated with activated CD4+ T cells 
(R = − 0.42), and CXCR1 was positively correlated with 
neutrophils (R = 0.72; Fig. 7 and Supplementary Table S9).

Analysis of the predictive value of biomarkers
ROC analysis of candidate biomarkers showed that the 
combination of TMEM54 and PLCG2 had a high value 
for distinguishing PCOS from healthy women of repro-
ductive age (AUC = 0.922). This indicated that the expres-
sion of TMEM54 and PLCG2 was related to PCOS and 
that combination of these two genes could be used as a 
biomarker for distinguishing PCOS from healthy women 
of reproductive age and for evaluating the efficacy of 
PCOS treatment (Fig. 8).

The predictive value of the selected biomarkers was 
tested using the external dataset GSE193812 and col-
lected peripheral blood, and it was found that the bio-
markers selected in this study still have good predictive 
ability both in the external dataset (AUC = 0.812) and in 
the peripheral blood samples (AUC = 0.889), as shown in 
Fig. 9.

Discussion
PCOS is one of the most common ovo-derived endocrine 
diseases in women of reproductive age. Its basic patho-
physiological features include hyperandrogenaemia and 
IR caused by disruption of the local internal environ-
ment, cytokine expression, and ovary function.

In this study, we identified DEGs between PCOS and 
normal controls and showed that the combination of 
TMEM54 and PLCG2 was a biomarker of PCOS. We also 
found that central memory CD4+ T cells, central memory 
CD8+ T cells, effector memory CD4+ T cells, γδT cells, 
and Th17 cells may influence the occurrence of PCOS. 
PLCG2 was highly correlated with γδT cells and central 
memory CD4+ T cells.

The follicular microenvironment is composed of FF and 
granulosa cells (GCs). GCs regulate the local microenvi-
ronment of FF through various mechanisms, participate 
in the metabolism of oocytes, and protect oocytes from 
the invasion of components in the external environment 
[20]. The composition of the oocyte GC regulatory loop 
and follicular microenvironment is critical for the coordi-
nation of reproductive activities, and any changes in the 
composition of FF/GC molecules may affect the quality 

Fig. 6 Expression of candidate biomarkers. (A) Heatmap of differences in the expression of candidate biomarkers between PCOS and normal control 
samples. The colours of the blocks represent the normalised gene expression levels in the samples. (B) Boxplot of differences in the expression of can-
didate biomarkers between groups. *** p < 0.001, and **** p < 0.0001. (C) Heatmap of the correlations between 20 candidate biomarkers. Colour blocks 
with correlation coefficients greater than 0.05 in the upper part of the figure are not displayed. Blue represents positive correlations, orange represents 
negative correlations, and darker colours indicate stronger correlations
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of oocytes [21]. Therefore, analysis of the immune infil-
trating microenvironment of GCs can provide insights 
into the microenvironment of FF.

As the most important adaptive immune response cells 
in the immune system, T lymphocytes secrete various 
inflammatory and immunomodulatory molecules and 
are involved in regulating multiple ovarian functions, 

such as follicle formation, ovulation, and luteal degenera-
tion. Activated lymphocytes secrete inflammatory cyto-
kines, including IL-1, IL-6, IL-12, TNF-α, and insulin-like 
growth factor-1 [22]. In recent years, many domestic and 
foreign studies have reported that the levels of inflamma-
tory factors, such as IL-6, TNF-α, and C-reactive protein, 
are higher in patients with PCOS than in normal women 

Fig. 8 Predictive value of biomarkers. (A) The predictive value of 20 candidate genes for PCOS was evaluated using a bar graph of the AUC. An AUC value 
greater than 0.85 indicated that the model differentiating effect was satisfactory. (B) Diagnostic efficacy comparison of the ROC curves of TMEM54 and 
PLCG2 combined and separate

 

Fig. 7 Correlations between candidate biomarkers and 28 types of immune cells. (A) Heatmap of the correlations between 28 immune cells and 20 
candidate biomarkers. The colours of the blocks indicate the magnitude of the correlation. (B, C) Scatter plots of the two groups of correlations with the 
largest absolute values of positive and negative correlations
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[23]. Moreover, inflammatory factors can mediate IR 
directly or indirectly through adipose tissue, suggest-
ing that the occurrence and development of PCOS are 
closely related to inflammatory factors [24, 25]. Mature T 
cells can be categorised as CD4+ T cells or CD8+ T cells 
according to their CD molecular phenotype. Studies have 
shown that the ratio of CD4+/CD8 + is related to IL-2 
[26, 27], IL-7 [28] and IL-16 [29]. CD4+ T cells and CD8+ 
T cells have different functions, which play synergistic 
or restrictive roles, and the ratio of CD4+/CD8+ T cells 
reflects changes in immune regulation.

Central memory T cells have the ability to expand, dif-
ferentiate, and self-renew like stem cells and can differ-
entiate unidirectionally into effector memory T cells and 
short-term effector T cells to prevent chronic infection 
and cancer [30]. In our study, central memory CD8+ T 
cells and central memory CD4+ T cells were increased 
in patients with PCOS, whereas effector memory CD4+ 
T cells were decreased, albeit without statistical signifi-
cance. In the local ovarian microenvironment of patients 
with PCOS, abnormal CD4+/CD8+ T cell ratios may dis-
rupt immune regulation. However, the differentiation of 
central memory T cells into effector memory T cells may 
also be blocked, resulting in increased central memory T 
cells and decreased effector memory T cells.

The functions of γδT cells were first discovered 
and studied in the field of autoimmune rheumatism. 
Although γδT cells are a highly conserved T-cell sub-
population, they have important implications in various 
aspects of immunobiology [31]. Animal models have 

shown that γδT cells regulate classical autoantigen reac-
tive αβT cells and B cells [32, 33] and play independent 
pro-inflammatory roles via direct secretion of IL-17 [34], 
TNF-α, and interferon (IFN)-γ [35] in a non-antigen-
driven pattern. Many studies have confirmed that the lev-
els of TNF-α, IFN-γ, and IL-18 are significantly increased 
in patients with PCOS and are positively correlated with 
IR [24, 36, 37]. In this study, the numbers of γδT cells 
were higher in patients with PCOS than in normal con-
trols, this observation may be related to the observed 
increases in TNF-α and IFN-γ secretion by high num-
bers of γδT cells. Notably, CD3+CD4−CD8− γδT cells 
are increased in women with recurrent abortion, con-
tributing to foetal loss by regulating transforming growth 
factor-β and IL-17 secretion and promoting inflamma-
tion [38]. The risk of abortion after pregnancy in patients 
with PCOS is more than three times higher than that in 
normal women, which may be related to the presence of 
a chronic inflammatory state and autoimmune disorders, 
such as active autoimmunity.

The high correlation between the CXC motif chemo-
kine receptor 1 (CXCR1) gene and various immune cells 
was notable, and the correlation between CXCR1 and 
neutrophils reached R = 0.72. The protein encoded by 
the CXCR1 gene is a member of the G-protein-coupled 
receptor family and acts as a receptor for IL-8. IL-8 is a 
powerful neutrophil chemokine that binds to receptors 
and promotes neutrophil activation. CXCR1 binds to IL-8 
with high affinity and transduces signals through a sec-
ond messenger system activated by G proteins [39, 40]. 

Fig. 9 (A) Diagnostic efficacy of the ROC curves of TMEM54 and PLCG2 combined in RT-qPCR. (B) Diagnostic efficacy of the ROC curves of TMEM54 and 
PLCG2 combined in GSE193812.
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This explains the results of our analysis from a mechanis-
tic level and supports the accuracy of our results.

One of the selected biomarkers, transmembrane pro-
tein 54 (TMEM54), is a member of the transmembrane 
protein family, which contains many proteins with 
unknown functions. Studies have shown that TMEM 
expression is different in tumour tissues than in adja-
cent healthy tissues, and some TMEM family members 
have been identified as potential prognostic biomarkers 
in different types of tumours [41]. In addition, TMEM 
proteins are tumour suppressors or oncogenes and have 
been shown to be associated with tumour progression 
and invasion [42, 43] or chemotherapy resistance [44, 45]. 
Although there are few studies on TMEM54, our current 
findings suggest that the TMEM54 gene may have impor-
tant roles in the development of PCOS; further studies 
are warranted.

Phospholipase C gamma 2 (PLCG2) is a transmem-
brane signalling enzyme that is an important driver 
of many immunological aetiological diseases, such as 
inflammation, autoimmune diseases, immunodeficien-
cies, and allergies, as well as haematological malig-
nancies. Some studies have demonstrated that point 
mutations in the PLCG2 gene may be an important cause 
of severe spontaneous inflammation and autoimmunity 
[46]. In a meta-analysis of gene expression in patients 
with rheumatoid arthritis (RA), PLCG2 was found to be 
upregulated in several datasets, including many pathways 
associated with RA inflammatory responses, e.g., inflam-
masome activation, platelet aggregation, and activation, 
indicating that PLCG2 is a potential target for the control 
of RA inflammation [47]. Moreover, PLCG2 is impor-
tant in bone marrow cells, including monocytes, macro-
phages, NK cells, DCs, and mast cells, possibly because 
it promotes downstream signalling involving Fc receptors 
[48]. In a bioinformatics analysis of the tumour micro-
environment in soft tissue sarcoma, PLCG2 was found 
to be an indicator of the tumour microenvironment and 
patient prognosis [49]. Additionally, CD8+ T cells, γδT 
cells, monocytes, and M1 macrophages were shown to be 
positively correlated with PLCG2 expression, consistent 
with our current results.

There were some limitations to this study. First, this 
study was only carried out from the perspective of gene 
transcriptome, and multi-omics and mechanistic studies 
were not performed. Further validation of our bioinfor-
matics results through in vitro and in vivo experiments 
and clinical practice is needed.

In summary, in this study, ssGSEA was used for the 
first time to analyse immune infiltration into the fol-
licle microenvironment in patients with PCOS. Central 
memory CD4+ T cells, central memory CD8+ T cells, 
effector memory CD4+ T cells, γδT cells, and Th17 cells 
may be involved in the occurrence of PCOS. In addition, 

differences in gene expression in ovarian tissues between 
patients with PCOS and healthy women of reproductive 
age were determined, and our findings showed that the 
combination of TMEM54 and PLCG2 was a biomarker 
of PCOS. PLCG2 was shown to be highly correlated with 
γδT cells and central memory CD4+ T cells. These find-
ings provide a basis for further research on the immuno-
logical pathogenesis of PCOS.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12884-023-05693-4.

Additional file 1: Supplementary Tables

Additional file 2: Supplementary Figures

Acknowledgements
We would like to thank all the patients for participation in this study. We would 
also like to thank Editage (www.editage.cn) for English language editing and 
the GEO Database for providing us with a shareable dataset.

Authors’ contribution
All authors contributed to the article and approved the final version for 
submission.

Funding
This work was supported by Guangzhou Science and Technology Plan Project 
(grant number: 202102080062) and Guangdong Province Medical Research 
Funding (grant number: B2023135).

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
NCBI Gene Expression Omnibus (GEO). GSE84958 https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE84958.
GSE106724 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106724.
GSE114419https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114419.
GSE137684 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137684.
GSE193812 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193812.

Declarations

Ethics approval and consent to participate
The studies involving human participants were reviewed and approved by 
the Ethics Committee of Guangdong Provincial Fertility Hospital. All methods 
were performed according to the Declaration of Helsinki. Anonymized 
and deidentified information for participants was used for analysis, so the 
requirement for informed consent permission was waived by the Ethics 
Committee of Guangdong Provincial Fertility Hospital.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 18 December 2022 / Accepted: 9 May 2023

References
1. Qiao J, Li R, Li L. Polycystic ovary syndrome -- an epidemiological study of poly-

cystic ovary syndrome. Chin J Practical Gynecol Obstet. 2013;29(11):849–52.

http://dx.doi.org/10.1186/s12884-023-05693-4
http://dx.doi.org/10.1186/s12884-023-05693-4
http://www.editage.cn
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84958
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84958
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106724
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114419
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137684
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193812


Page 11 of 11Gao et al. BMC Pregnancy and Childbirth          (2023) 23:377 

2. Brännström M, Enskog A. Leukocyte networks and ovulation. J Reprod Immu-
nol. 2002;57(1–2):47–60.

3. Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: parallels with inflam-
matory processes. Endocr Rev. 2019;40(2):369–416.

4. Repaci A, Gambineri A, Pasquali R. The role of low-grade inflammation in the 
polycystic ovary syndrome. Mol Cell Endocrinol. 2011;335(1):30–41.

5. Barrea L, Marzullo P, Muscogiuri G, Di Somma C, Scacchi M, Orio F, et al. Source 
and amount of carbohydrate in the diet and inflammation in women with 
polycystic ovary syndrome. Nutr Res Rev. 2018;31(2):291–301.

6. Wu R, Fujii S, Ryan NK, Van der Hoek KH, Jasper MJ, Sini I, et al. Ovarian leuko-
cyte distribution and cytokine/chemokine mRNA expression in follicular fluid 
cells in women with polycystic ovary syndrome. Hum Reprod (Oxford England). 
2007;22(2):527–35.

7. Solano ME, Sander VA, Ho H, Motta AB, Arck PC. Systemic inflammation, cellular 
influx and up-regulation of ovarian VCAM-1 expression in a mouse model of 
polycystic ovary syndrome (PCOS). J Reprod Immunol. 2011;92(1–2):33–44.

8. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for remov-
ing batch effects and other unwanted variation in high-throughput experi-
ments. Bioinf (Oxford England). 2012;28(6):882–3.

9. Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for genera-
tion of box plots. Nat Methods. 2014;11(2):121–2.

10. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for micro-
array and RNA-seq data. BMC Bioinformatics. 2013;14:7.

11. Smyth GK. limma: Linear Models for microarray data. New York: Springer; 2005.
12. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG 

for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 
2023;51(D1):D587–d92.

13. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. 2000;28(1):27–30.

14. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for compar-
ing biological themes among gene clusters. Omics-a J Integr Biology. 
2012;16(5):284–7.

15. Robert T, Methodological B.). 1996.
16. Kursa MB, Rudnicki WR. Feature selection with Boruta Package. J Stat Softw. 

2010;36(11):1–13.
17. Friendly M, Corrgrams. Exploratory displays for correlation matrices. Am Stat. 

2002;56(November):316–24.
18. Gómez-Rubio V. ggplot2 - Elegant Graphics for Data Analysis (2nd Edition). 

Journal of Statal Software. 2017;077(Book review 2).
19. Kolde R. pheatmap: Pretty Heatmaps. 2015.
20. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte 

environment: follicular fluid and cumulus cells are critical for oocyte health. 
Fertil Steril. 2015.

21. Palomba S, Daolio J, Sala GL. Oocyte competence in women with polycystic 
ovary syndrome. Trends in Endocrinology & Metabolism. 2017;28(3):186–98.

22. Walusimbi SS, Pate JL. Physiology and Endocrinology Symposium: 
role of immune cells in the corpus luteum. Journal of animal science. 
2013;91(4):1650-9.

23. Deligeoroglou E, Vrachnis N, Athanasopoulos N, Iliodromiti Z, Sifakis S, 
Iliodromiti S, et al. Mediators of chronic inflammation in polycystic ovarian 
syndrome. Gynecol endocrinology: official J Int Soc Gynecol Endocrinol. 
2012;28(12):974–8.

24. Escobar-Morreale HF, Botella-Carretero JI, Villuendas G, Sancho J, San Millán 
JL. Serum interleukin-18 concentrations are increased in the polycystic ovary 
syndrome: relationship to insulin resistance and to obesity. J Clin Endocrinol 
Metab. 2004;89(2):806–11.

25. Atabekoglu CS, Sönmezer M, Özmen B, Yarcı A, Akbıyık F, Taşçı T, et al. Increased 
monocyte chemoattractant protein-1 levels indicating early vascular damage 
in lean young PCOS patients. Fertil Steril. 2011;95(1):295–7.

26. Pozzesi N, Gizzi S, Gori F, Vacca C, Cannarile L, Riccardi C, et al. IL-2 induces 
and altered CD4/CD8 ratio of splenic T lymphocytes from transgenic mice 
overexpressing the glucocorticoid-induced protein GILZ. J Chemother. 
2007;19(5):562–9.

27. Räsänen L, Jansén CT, Hyöty H, Reunala T, Morrison H. Cis-urocanic acid 
stereospecifically modulates human monocyte IL-1 production and surface 
HLA-DR antigen expression, T-cell IL-2 production and CD4/CD8 ratio. Photo-
dermatology. 1989;6(6):287–92.

28. Geiselhart LA, Humphries CA, Gregorio TA, Mou S, Subleski J, Komschlies KL. IL-7 
administration alters the CD4:CD8 ratio, increases T cell numbers, and increases 
T cell function in the absence of activation. Journal of immunology (Baltimore, 
Md: 1950). 2001;166(5):3019-27.

29. Koike M, Sekigawa I, Okada M, Matsumoto M, Iida N, Hashimoto H, et al. Rela-
tionship between CD4(+)/CD8(+) T cell ratio and T cell activation in multiple 
myeloma: reference to IL-16. Leuk Res. 2002;26(8):705–11.

30. Pais Ferreira D, Silva JG, Wyss T, Fuertes Marraco SA, Scarpellino L, Charmoy M, 
et al. Central memory CD8(+) T cells derive from stem-like Tcf7(hi) effector cells 
in the absence of cytotoxic differentiation. Immunity. 2020;53(5):985–1000e11.

31. Bank I. The role of Gamma Delta T cells in Autoimmune Rheumatic Diseases. 
Cells. 2020;9(2).

32. Samuelson EM, Laird RM, Papillion AM, Tatum AH, Princiotta MF, Hayes SM. 
Reduced B lymphoid kinase (blk) expression enhances proinflammatory 
cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS ONE. 
2014;9(3):e92054.

33. Rezende RM, Lanser AJ, Rubino S, Kuhn C, Skillin N, Moreira TG, et al. γδ T cells 
control humoral immune response by inducing T follicular helper cell differen-
tiation. Nat Commun. 2018;9(1):3151.

34. Reinhardt A, Yevsa T, Worbs T, Lienenklaus S, Sandrock I, Oberdörfer L, et al. 
Interleukin-23-Dependent γ/δ T cells produce Interleukin-17 and Accumulate 
in the Enthesis, aortic valve, and ciliary body in mice. Volume 68. Arthritis & 
rheumatology; 2016. pp. 2476–86. (Hoboken, NJ). 10.

35. Avau A, Mitera T, Put S, Put K, Brisse E, Filtjens J, et al. Systemic juvenile idio-
pathic arthritis-like syndrome in mice following stimulation of the immune 
system with Freund’s complete adjuvant: regulation by interferon-γ. Arthritis & 
rheumatology (Hoboken NJ). 2014;66(5):1340–51.

36. Choi YS, Yang HI, Cho S, Jung JA, Jeon YE, Kim HY, et al. Serum asymmetric 
dimethylarginine, apelin, and tumor necrosis factor-α levels in non-obese 
women with polycystic ovary syndrome. Steroids. 2012;77(13):1352–8.

37. Kim CH, Ahn JW, You RM, Kim SH, Chae HD, Kang BM. Pioglitazone treatment 
decreases follicular fluid levels of tumor necrosis factor-α and interleukin-6 in 
patients with polycystic ovary syndrome. Clin experimental reproductive Med. 
2011;38(2):98–102.

38. Talukdar A, Rai R, Aparna Sharma K, Rao DN, Sharma A. Peripheral Gamma Delta 
T cells secrete inflammatory cytokines in women with idiopathic recurrent 
pregnancy loss. Cytokine. 2018;102:117–22.

39. Bishayi B, Nandi A, Dey R, Adhikary R. Expression of CXCR1 (IL-8 receptor A) in 
splenic, peritoneal macrophages and resident bone marrow cells after acute 
live or heat killed Staphylococcus aureus stimulation in mice. Microb Pathog. 
2017;109:131–50.

40. Jaufmann J, Carevic M, Tümen L, Eliacik D, Schmitt F, Hartl D, et al. Enhanced 
IgG(1) -mediated antibody response towards thymus-dependent immuniza-
tion in CXCR1-deficient mice. Immun Inflamm Dis. 2021;9(1):210–22.

41. Ma R, Feng N, Yu X, Lin H, Zhang X, Shi O, et al. Promoter methylation of Wnt/β-
Catenin signal inhibitor TMEM88 is associated with unfavorable prognosis of 
non-small cell lung cancer. Cancer biology & medicine. 2017;14(4):377–86.

42. Hu R, Hu F, Xie X, Wang L, Li G, Qiao T, et al. TMEM45B, up-regulated in human 
lung cancer, enhances tumorigenicity of lung cancer cells. Tumour biology: 
the journal of the International Society for Oncodevelopmental Biology and 
Medicine. 2016;37(9):12181–91.

43. Shen K, Yu W, Yu Y, Liu X, Cui X. Knockdown of TMEM45B inhibits cell prolifera-
tion and invasion in gastric cancer. Biomed pharmacotherapy = Biomedecine 
pharmacotherapie. 2018;104:576–81.

44. Schmit K, Michiels C. TMEM Proteins in Cancer: a review. Front Pharmacol. 
2018;9:1345.

45. de Leon M, Cardenas H, Vieth E, Emerson R, Segar M, Liu Y, et al. Transmem-
brane protein 88 (TMEM88) promoter hypomethylation is associated with 
platinum resistance in ovarian cancer. Gynecol Oncol. 2016;142(3):539–47.

46. Yu P, Constien R, Dear N, Katan M, Hanke P, Bunney TD, et al. Autoimmunity and 
inflammation due to a gain-of-function mutation in phospholipase C gamma 2 
that specifically increases external Ca2 + entry. Immunity. 2005;22(4):451–65.

47. Afroz S, Giddaluru J, Vishwakarma S, Naz S, Khan AA, Khan N. A Comprehensive 
Gene expression Meta-analysis identifies Novel Immune Signatures in Rheuma-
toid Arthritis Patients. Front Immunol. 2017;8:74.

48. Jakus Z, Simon E, Frommhold D, Sperandio M, Mócsai A. Critical role of phos-
pholipase Cgamma2 in integrin and fc receptor-mediated neutrophil functions 
and the effector phase of autoimmune arthritis. J Exp Med. 2009;206(3):577–93.

49. Li Z, Zhao R, Yang W, Li C, Huang J, Wen Z, et al. PLCG2 as a potential indicator 
of tumor microenvironment remodeling in soft tissue sarcoma. Medicine. 
2021;100(11):e25008.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations. 


	Identification of immune cell infiltration and effective biomarkers of polycystic ovary syndrome by bioinformatics analysis
	Abstract
	Introduction
	Materials and methods
	Data downloading
	Data preprocessing
	Evaluation of the distribution of immune cell subtypes
	Screening of differentially expressed genes (DEGs)
	Functional enrichment analysis
	Screening of biomarkers
	Correlation analysis between biomarkers and immune cells
	Analysis of the predictive value of biomarkers
	Statistical analysis and graphical visualisation

	Results
	Evaluation of the distributions of immune cell subtypes
	Screening of DEGs

	Discussion
	References


