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Abstract 

Background Pregnant people are particularly vulnerable to SARS-CoV-2 infection and to ensuing severe illness. 
Predicting adverse maternal and perinatal outcomes could aid clinicians in deciding on hospital admission and early 
initiation of treatment in affected individuals, streamlining the triaging processes.

Methods An international repository of 1501 SARS-CoV-2-positive cases in pregnancy was created, consisting of 
demographic variables, patient comorbidities, laboratory markers, respiratory parameters, and COVID-19-related 
symptoms. Data were filtered, preprocessed, and feature selection methods were used to obtain the optimal feature 
subset for training a variety of machine learning models to predict maternal or fetal/neonatal death or critical illness.

Results The Random Forest model demonstrated the best performance among the trained models, correctly iden-
tifying 83.3% of the high-risk patients and 92.5% of the low-risk patients, with an overall accuracy of 89.0%, an AUC 
of 0.90 (95% Confidence Interval 0.83 to 0.95), and a recall, precision, and F1 score of 0.85, 0.94, and 0.89, respectively. 
This was achieved using a feature subset of 25 features containing patient characteristics, symptoms, clinical signs, 
and laboratory markers. These included maternal BMI, gravidity, parity, existence of pre-existing conditions, nicotine 
exposure, anti-hypertensive medication administration, fetal malformations, antenatal corticosteroid administration, 
presence of dyspnea, sore throat, fever, fatigue, duration of symptom phase, existence of COVID-19-related pneumo-
nia, need for maternal oxygen administration, disease-related inpatient treatment, and lab markers including sFLT-1/
PlGF ratio, platelet count, and LDH.

Conclusions We present the first COVID-19 prognostication pipeline specifically for pregnant patients while utiliz-
ing a large SARS-CoV-2 in pregnancy data repository. Our model accurately identifies those at risk of severe illness 
or clinical deterioration, presenting a promising tool for advancing personalized medicine in pregnant patients with 
COVID-19.
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Introduction
As of March 2023, Coronavirus Disease of 2019 (COVID-
19) from Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2) infection has resultedin over 
676,000,000 confirmed cases and 6,800,000 confirmed 
deaths worldwide [1]. Pregnant individuals are more 
likely to become severely ill compared to non-pregnant 
people [2–4]. Infection with SARS-CoV-2 in pregnancy 
can result in acute respiratory distress syndrome (ARDS), 
multiple organ failure, or maternal or fetal death [5]. 
Pregnant individuals are particularly vulnerable to res-
piratory viruses due to the physiologic and immunologic 
changes associated with pregnancy and higher oxygen 
demands related to fetal-placental circulation [5]. During 
the SARS-epidemic in 2003, approximately 50% of preg-
nant patients with SARS-CoV were admitted to an inten-
sive care unit (ICU), 33% required mechanical ventilation, 
and 25% experienced fatal outcomes [6]. Comorbidities 
such as obesity, hypertension, pre-existing respiratory ill-
ness, and type 2 diabetes are known major risk factors for 
severe complications of COVID-19 during pregnancy [7, 
8]. Other probable predictors in the general population 
include abnormal laboratory markers, radiological lung 
features, and respiratory parameters [7]. Despite these 
known risk factors, it remains challenging to predict the 
clinical course of pregnant patients with SARS-CoV-2, 
which can range from asymptomatic or mild disease to 
the most severe of outcomes [9, 10]. A reliable method 
for identifying individuals at-risk for detrimental severe 
outcomes would greatly benefit this vulnerable popula-
tion by allowing clinicians to begin medical intervention 
early on in the disease course. As the number of global 
cases rises, access to large data repositories of COVID-19 
cases in pregnant people has provided new opportunities 
for the development of Artificial Intelligence (AI) models.

AI algorithms use a variety of approaches to imitate 
human intelligence for automatic decision-making. Since 
the discovery of SARS-CoV-2, AI and in particular its 
subfield of machine learning (ML), has been used suc-
cessfully to support clinical decision-making in COVID-
19 cases [11–13]. In particular, deep learning methods, 
a subtype of ML, have found success in applying neural 
network architectures which vaguely mimic the brain by 
propagating information through a series of nodes which 
manipulate the information into useful forms [14]. The 
propagation process is systematically adjusted through 
a “training” stage where parameters of the network are 
optimized to improve performance of the network [14]. 
Using AI and a comprehensive SARS-CoV-2 in pregnancy 
data repository, we have developed a robust COVID-19 
prognostication algorithm for pregnant patients with 
COVID-19. The purpose of this algorithm is to conduct 
higher-level risk-stratification upon obtaining a positive 

SARS-CoV-2 test such that individual maternal and fetal 
factors can be considered in clinical decisions for more 
efficient patient treatment pipelines. Our prognostica-
tion algorithm allows for effective triaging of this vulner-
able population in resource-strained healthcare systems 
by determining whether a pregnant person is at risk of 
severe outcomes. Identifying low-risk individuals could 
facilitate outpatient management and virtual antenatal 
care without the need for in-person assessments and lab-
oratory tests, thus decreasing the time and financial load 
on healthcare systems.

Methods
Study design
We developed and evaluated a novel prognosis-aid for 
early risk assessment of pregnant patients with SARS-
CoV-2 based on retrospective international data from 
three countries (Canada, Austria, and Germany). The 
primary objective of our algorithm was to provide high-
accuracy prediction of an adverse outcome for pregnant 
patients. The model was developed through a series of 
steps including preprocessing, feature selection, and 
algorithm creation. Multiple machine learning models 
were trained and compared to find the optimal model. 
This study was conducted in accordance with the Trans-
parent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) Statement 
[15].

Study population and dataset
Two independent datasets of patients who tested positive 
for SARS-CoV-2 during pregnancy were used to create 
a single international data repository of 1501 pregnant 
patients: (a) The COVID-19 Related Obstetric and Neo-
natal Outcome Study (CRONOS) dataset from Germany 
and Austria established by the German Society of Perina-
tal Medicine (DGPM) consisting of 1402 patients and (b) 
The Mount Sinai Hospital (MSH) dataset from Canada 
consisting of 99 patients. The repository comprised mul-
tiple common variables, including demographics, comor-
bidities, symptoms, respiratory parameters, radiological 
results, and laboratory markers. These data points were 
documented either at the time of a positive SARS-CoV-2 
test or at a time most recent to the positive test. To cre-
ate a consistent dataset usable for ML, only features avail-
able at the time of COVID-19 testing were used to make 
predictions, and other values available from later points 
in the pregnancy were not used. Laboratory markers and 
symptoms would reflect the patients’ immediate health at 
the time of measurement.

Figure  1 describes the time at which the predictors 
(selected features) and outcomes occurred. Some pre-
dictors occur at a single time point in pregnancy, while 
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others could change during pregnancy. Many predictors 
and outcomes could arise throughout the entire course 
of the pregnancy, making temporality an important con-
cern. We will only use predictors available at the time of a 
positive test to study outcomes that haven’t occurred yet. 
For example, features in the category ‘patient character-
istics’ are determined early in the pregnancy and are not 
modified during pregnancy (BMI, gravidity, parity, pre-
existing comorbidities). These would be applicable to any 
stage of the pregnancy. Those included under ‘binary out-
comes’ (Y/N), would be considered Yes if they occurred 
at any time prior to the positive test (smoking exposure, 
use of antihypertensives, diagnosis of fetal malforma-
tions on a mid-trimester ultrasound scan, administration 
of antenatal corticosteroids). The ‘values’ used for symp-
toms, signs, laboratory tests, and assessment of fetal well-
being would be those recorded at the time of the positive 
test, disregarding any prior record of events. Finally, out-
comes that will be predicted will only include events that 
were relevant to the SARS-CoV-2 infection. A study by 
Gold et al [16] demonstrated their proposed algorithms 
both for how patient symptoms collected at the time of 
COVID-19 diagnosis can be used to determine whether 
pregnant patients require inpatient management, and 
how clinical signs, laboratory markers, and radiological 
findings can help identify at-risk patients. Data collection 
methods such as these would be well-suited for the appli-
cation of a pregnant patient prognostication model.

Ethics
Ethics approval was obtained from Ryerson University 
(REB 2020–310, Aug 13, 2020) and MSH (20–0160-C, 
July 16, 2020) Research Ethics Boards. Data-use and col-
laboration agreements were established with CRONOS 
and MSH to facilitate the transfer of de-identified patient 
data to Ryerson University to build the repository. Eth-
ics approval for the CRONOS dataset was obtained by 
the DGPM from the University Hospital of Schleswig–
Holstein Campus Kiel (reference number: D 451/20, 
amended Feb 15, 2021, for this collaboration). The 
CRONOS Consortium holds individual ethics approvals 
from committees in each federal state and/or University 
Hospital for all collaborators within Germany and Aus-
tria. All methods described in this study were carried out 
in accordance with the.guidelines and regulations of all 
relevant research ethics boards. Informed consent from 
patients was notrequired by ethics boards due to data 
de-identification.

Outcomes and definitions
Our primary outcome was an ‘adverse pregnancy event’, 
which included: (a) maternal-related outcomes, such as 
admission to ICU, need for mechanical ventilation, criti-
cal illness, or death, (b) delivery-related features, such as 
pregnancy termination, iatrogenic birth, surgical delivery, 
and stillbirth (all as a result of SARS-CoV-2 infection), 

Fig. 1 Timeline of predictors (features) and adverse pregnancy outcomes
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and (c) neonatal-related variables, such as estimated fetal 
birth weight <  10th centile, APGAR score at 5  min < 7, 
admission to the neonatal intensive care unit (NICU) 
due to COVID-19 (admissions to the NICU for shorter 
amounts of time without respiratory support while await-
ing test results or for a brief period of observation were 
not included), and length of NICU stay greater than 24 h 
where there was also administration of breathing support 
for the neonate. Table 1 shows the variables and respec-
tive criteria used in defining adverse outcomes.

Algorithm creation
We used a binary classification task to predict the risk 
of adverse outcomes in SARS-CoV-2-positive pregnant 
patients and their neonates. The algorithm defined the 
possibility of an adverse outcome of a patient as either 
low risk or high risk. Figure 2 shows the overall architec-
ture of our framework. Model creation consisted of three 
main components: preprocessing, feature selection, and 
model development. Full details of the algorithm creation 
are presented in Additional file 1: Appendix A. The fol-
lowing outlines the steps employed for the overall crea-
tion of the model:

1. Preprocessing

 The facilitation of the train-test process by appropri-
ately cleaning and preparing the entire dataset. This 

was done by analyzing the data for discrepancies, 
handling missing values, scaling and balancing, and 
“cleaning” the data. Data cleaning primarily involved 
the handling of invalid values, categorizing continu-
ous variables, and creating new features by aggregat-
ing multiple features representative of one relevant 
attribute.

2. Feature engineering
 The creation of new features based on knowledge 

of the relevant biological markers, in other words, 
creating composite features based on extra features 
that are pertinent to a single more general feature. 
For example, pre-existing conditions were provided 
as individual, binary features. These conditions were 
used to engineer a new feature to generate the “exist-
ence of pre-existing diseases” feature.

3. Feature selection
 The refinement of the larger feature set to gener-

ate a smaller more relevant feature subset. The 
most relevant features were selected based on their 
importance to the outcome, and achieved the great-
est performance as determined through an iterative 
elimination process called recursive feature elimina-
tion.

4. Creation of a balanced dataset through sampling
 Addressing the imbalanced dataset by looking at class 

distributions of low-risk and high-risk patients in the 
dataset and randomly eliminating samples from the 

Table 1 Adverse pregnancy outcome composition

a ICU, intensive care unit
b Extremely critically ill refers to any patient for whom the clinician entering data made an assessment on whether the condition constituted a potentially life-
threatening condition
c Iatrogenic birth has no defined delivery method, can be any delivery method as long as it is a mandatory termination of pregnancy for medical reasons and not 
spontaneous labour
d Estimated fetal birth weight was the most recent available ultrasound-estimated weight prior to the positive test
e NICU, neonatal intensive care unit
f Breathing support includes oxygen delivery through nasal cannula, high flow nasal cannula, CPAP, or intubation

Variable Criteria

Maternal Admission to adult  ICUa Yes

Receiving mechanical ventilation Yes

Extremely critically  illb Yes

Death Yes

Delivery Termination of pregnancy due to COVID-19 associated reason Yes

Iatrogenic birth due to COVID-19 associated  reasonc Yes

Surgical delivery due to COVID-19 associated reason Yes

Stillbirth (birth of the infant that has died in-utero) Yes

Neonatal Small-for-gestational-age fetus [Estimated fetal birth weight as determined using fetal 
ultrasound)  centile]d

 < 10th

Apgar score at 5-min  < 7

Admission to NICU due to COVID-19 infection of the  mothere Yes

Length of stay in NICU & receiving breathing  supportf  > 24 h & Yes
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larger class. As a result, the training dataset becomes 
more balanced and thus allows the trained model to 
make more accurate, unbiased decisions.

5. Machine learning model creation
 A series of machine learning models were trained 

and tested using the training data from the feature 
selection step. These models were all evaluated sepa-
rately in order to identify the best performing algo-
rithm to be implemented in the final system.

The more complicated steps including management 
of missing data, feature selection, and model develop-
ment are elaborated upon in the following sections. 
For information regarding definitions and descriptions 
for machine learning-related terms, refer to Table S1 of 
Additional file 1: Appendix A.

Missing data
Repository data were inspected for invalid data points 
using the reference attribute ranges according to meta-
data and domain knowledge, and any invalid observa-
tions were excluded. An observation was considered 
invalid if all attributes for that observation had invalid 

values (e.g., null, 0, blank, or negatives). The data were 
then explored for potential discrepancies, including 
inconsistencies in data representation and data type, and 
these were manually corrected. After that exploration, 
the null condition was handled based on possible reasons 
for the missing values (e.g., in the case of the fetus, miss-
ing values for neonate and delivery attributes were filled 
with a new category code as “Not Applicable”).

Feature selection
To identify whether an attribute impacted the endpoints 
considered in the feature selection phase, we fitted a ran-
dom forest model with all 71 clinical attributes of the 
training set and calculated the model’s performance using 
the stratified tenfold cross-validation and area under the 
curve (AUC) scoring. An exhaustive list of these clinical 
attributes prior to feature selection can be found in Addi-
tional file  1: Appendix A. Cross-validation was under-
gone to reduce model over-fitting. Variables were then 
sequentially eliminated using the wrapper-based back-
ward elimination feature selection method (outlined in 
Additional file 1: Appendix A), and the model was trained 

Fig. 2 PROTECT framework
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on the remaining variables followed by performance cal-
culation. The process was repeated until the most impor-
tant attributes and the optimal number of features were 
identified based on the model’s performance. As shown 
in Fig.  3, a set of 25 features were selected as the opti-
mal features to train the models. Table  2 shows the 
most important features to maximize the separability 
of classes. These features included maternal body mass 
index (BMI), smoking exposure, pre-existing maternal 
illness, duration of maternal COVID-19 symptoms (for 
example, dyspnea, sore throat, fever, fatigue), COVID-19 
associated pneumonia, parity, gravidity, laboratory tests 
(for example, soluble fms-like tyrosine kinase 1 (sFLT-1) 
and placental growth factor (PlGF), thrombocytopenia, 
lactate dehydrogenase (LDH), aspartate transaminase 
(AST), alanine transaminase (ALT) levels), administra-
tion of antihypertensive medication, in-patient treat-
ment due to COVID-19, maternal oxygen administration, 
abnormal amniotic fluid levels (assessed through fetal 
imaging), signs of fetal distress, presence of fetal respira-
tory distress syndrome (RDS) and fetal malformations, as 
outlined in Table 2. Continuous variables were converted 
to categorical ones based on low, normal, and high ranges 
during pregnancy.

Model development
The CRONOS and MSH datasets were used to train, 
validate, and test the designed framework. The mod-
els which were trained and evaluated included Support 
Vector Machine, k-Nearest Neighbor, Decision Tree, 
Random Forest, XGBoost, and AdaBoost. Both datasets 

were used for training to make the model more general-
izable to demographics in various geographical regions. 
Additionally, by training on an aggregated dataset with 
patients from different distributions, we encourage 
our model to be generalizable. Furthermore, training 
on one dataset and validating/testing on another is an 
experimental setup primarily designed to evaluate AI 
methods specifically aimed at adapting to distribution 
shifts between datasets. As that task is not the focus of 
this paper, this approach was not used. The preprocess-
ing step was applied to the data, after which, 262 fea-
tures from the CRONOS repository and 214 features 
from the MSH repository were reduced to 71 features 
and 1501 cases. No patient records were excluded sec-
ondary to missing data. As mentioned in Additional 
file  1: Appendix  1, features included in the feature 
selection process only involved those that existed in 
both CRONOS and MSH repositories. These data-
sets included features associated with both maternal 
and neonatal health, thereby distinguishing the model 
from those created to predict COVID-19-related out-
comes in the general population. Next, the Near-Miss 
under-sampling algorithm was used to class-balance 
the dataset, which resulted in selecting 562 pregnant 
patients with even distribution among both high and 
low-risk classes. Finally, the 25-feature subset obtained 
from the previously described feature selection phase 
was used to train and evaluate the six ML models. 80% 
of this data (562 instances with 25 features) were ran-
domly assigned to a training and validation set and the 
remaining 20% was split into a test set (containing 60 
high-risk patients and 52 low-risk patients).

Fig. 3 Number of features used for training versus AUC-ROC score for determining the optimal number of features using the Backward elimination 
approach
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Results
Study population: training and test cohorts
A total of 1501 patients were included in the aggre-
gate data repository, with a mean (SD) age of 30.8 (5.6) 
years. Table  3 outlines the characteristics of the study 
population, separated by the existence of an adverse 
outcome.

Model performance
As shown in Fig.  4, the ensemble Random Forest 
model resulted in the best overall accuracy on the test 
set with a score of 0.90 (95% CI 0.83 to 0.95) in pre-
dicting adverse outcomes. The test set contained 60 
patients with a high risk of developing adverse out-
comes and 53 patients with a low risk of developing 

adverse outcomes. The Random Forest model identi-
fied 51/60 (83.3%) of the high-risk patients and 50/53 
(92.5%) of the low-risk patients, with an accuracy of 
89.0%, a recall score of 0.85, a precision of 0.94, and 
an F1 score of 0.89. The performance metrics for each 
model are summarized in Table  4, which shows that 
the Random Forest model had the highest performance 
based on AUC, followed by XGBoost, KNN, Decision 
Tree, AdaBoost, and SVM. Confusion matrices for 
each of the developed ML models are shown in Fig. 5. 
Each confusion matrix in this figure demonstrates the 
number of correctly and incorrectly predicted adverse 
outcome predictions (bottom right and bottom left, 
respectively), and correctly and incorrectly-predicted 
no-adverse outcome predictions (top left and top right, 
respectively) that were made by each tested ML model.

Table 2 Selected features through the feature-selection phase

a BMI Body mass index (kg/m2)
b sFlt-1/PlGF Soluble Fms-Like Tyrosine Kinase-1/Placental Growth Factor (Preeclampsia Ratio)
c LDH Lactate dehydrogenase
d AST Aspartate aminotransferase, GOT Glutamic oxaloacetic transaminase
e ALT Alanine aminotransferase, GPT Glutamic-pyruvic transaminase

Category and timing when determined Features

Patient characteristics [Data known pre-conception or early in 
pregnancy]

Maternal BMI before or at the beginning of  pregnancya

Gravidity (including current pregnancy/birth)

Parity (excluding current pregnancy/birth)

Pre-existing diseases exist or not

Binary outcomes (Yes/No) [Based on data obtained between con-
ception and the positive test]

Nicotine/smoking exposure during pregnancy

Antihypertensive medication (at any point during pregnancy)

Fetal malformations (structural malformation identified at 18–20 weeks of 
gestation)

Did the patient experience receive antenatal corticosteroids for fetal lung 
maturation RDS (respiratory distress syndrome) prophylaxis at any time 
during this pregnancy?

Presenting symptoms [Obtained at the time of the positive test] Dyspnea

Sore throat

Fever

Fatigue

Duration of symptomatic phase according to mother

Clinical signs [Determined at the time of positive test][RD2] COVID-19 associated pneumonia according to clinical assessment

Need for maternal oxygen administration

COVID-19-associated need for inpatient treatment

Laboratory markers [Obtained at the time of the positive test] Soluble fms-like tyrosine kinase 1 (sFlt-1) and placental growth factor (PlGF), 
ratio; sFlt-1/PlGFb

Thrombocytopenia (Platelet count: < 150 ×  109/L)

LDHc (normal ranges between 600–800 I.U./L)

AST or  GOTd (normal ranges between 200–400 U/L)

ALT or  GPTe (normal ranges between 200–400 U/L)

Assessment of fetal wellbeing [Assessed at the time of the positive 
test]

Ultrasound signs of fetal distress

Amniotic fluid (normal, polyhydramnios, oligohydramnios, or anhydram-
nios)
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Conclusions
In order to improve prediction accuracy of adverse out-
comes related to SARS-CoV-2 infection in pregnancy, 
we created an international data repository that con-
sisted of 1501 patients from three countries. These data 
were then used to train and test a ML algorithm that 
can predict adverse maternal, fetal, and gestational out-
comes with an accuracy of 89%.

While several studies have developed ML-based prog-
nostic models for SARS-CoV-2 infection in the general 
population, our study is the first to present such an algo-
rithm specifically for pregnant patients while utilizing a 
large SARS-CoV-2 in pregnancy data repository. This 
high-performance model specific to pregnancy pro-
vides a tool for clinicians to better identify at-risk preg-
nant patients with SARS-CoV-2 infection, allowing early 

Table 3 Repository data analysis for patients with adverse outcomes vs patients no adverse outcomes

a Given percentage is taken as a proportion of the total number of patients in that cohort, i.e. patients with adverse outcome or patients with no adverse outcome
b COVID-related symptoms include fever, cough, diarrhea, dyspnea, myalgia, fatigue, sore throat, malaise, nasal obstruction, headache, chest pain, altered sense of 
taste or smell, expectorations, and/or nausea/vomiting
c Pre-existing conditions include cardiovascular (i.e., hypertension), sleep apnea, preexisting diabetes mellitus, gestational diabetes mellitus, thyroid disease, 
metabolic disease, pulmonary disease, autoimmune disease, coagulopathy or thromboembolism, hematologic disease, gastrointestinal disease, hepatic disease, 
kidney disease, neurological or psychiatric illness, or any other type of preexisting condition defined by the clinician

Predictor Characteristics CRONOS (n = 1402) MSH (n = 99)

Adverse Outcomes Total participants n (%) No adverse outcome Adverse outcome No adverse outcome Adverse outcome
1,182 (84.3) 220 (15.7) 38 (38.4) 61 (61.6)

(Maternal) Admission to adult ICU n 
(%)a

- 55 (25.0) - 61 (100.0)

(Maternal) Receiving mechanical 
ventilation n (%)

- 19 (9.0) - 15 (24.6)

(Maternal) Extremely critically ill n (%) - 27 (12.3) - 12 (19.7)

(Maternal) Death n (%) - 1 (0.5) - 4 (6.6)

(Delivery) Termination of pregnancy 
due to COVID-19 associated reason 
n (%)

- 31 (14.1) - 0 (0)

(Delivery) Iatrogenic birth due to 
COVID-19 associated reason n (%)

- 16 (7.3) - 0 (0)

(Delivery) Surgical delivery due to 
COVID-19 associated reason n (%)

- 27 (12.3) - 3 (4.9)

(Delivery) Stillbirth n (%) - 25 (11.4) - 3 (4.9)

(Neonatal) Estimated fetal birth 
weight < 10th percentile n (%)

- 68 (30.9) - 3 (4.9)

(Neonatal) Apgar score at 5 min < 7 
n (%)

- 36 (16.4) - 5 (8.2)

(Neonatal) Admission to NICU due to 
COVID-19 infection of the mother n 
(%)

- 22 (10.0) - 3 (4.9)

(Neonatal) Length of stay in 
NICU > 24 h & receiving breathing 
support n (%)

- 63 (28.6) - 1 (1.6)

Demographics Maternal age (years)
Mean (SD)

30.6 (5.5) 31.3 (6.0) 31.4 (6.3) 34.1 (4.9)

Pregnancy Feature 
Analysis Outcomes

COVID-19-related symptom partici-
pantsb n (%)

885 (74.9) 180 (81.8) 19 (19.2) 45 (73.8)

Pre-existing conditionsc n (%) 369 (31.2) 76 (34.5) 38 (50.0) 61 (100.0)

Neonates tested positive for antibod-
ies n (%)

69 (5.8) 12 (5.5) - -

Smoking/nicotine exposure during 
pregnancy n (%)

77 (6.5) 16 (7.3) 0 (0) 1 (1.6)

Maternal age: < 20 n (%) 23 (1.9) 6 (2.7) 0 (0) 0 (0)

Maternal age: 20–34 n (%) 860 (72.8) 146 (66.4) 21 (55.3) 38 (62.3)

Maternal age: >  = 35 n (%) 275 (23.3) 66 (30.0) 15 (39.5) 23 (37.7)
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hospital admission, enhanced monitoring, and proac-
tive intervention. This algorithm has high clinical rel-
evance as a SARS-CoV-2 infection poses significant risk 
to a small proportion of pregnant people, including an 
increased risk for critical disease requiring ventilation 
support as well as other maternal and fetal complica-
tions [17]. A 2020 meta-analysis including 192 interna-
tional studies on the clinical manifestations, risk factors, 
and maternal perinatal outcomes of COVID-19 in preg-
nancy [2] found that the most common symptoms for 
pregnant or recently-pregnant women with suspected or 
confirmed COVID-19 were fever (40%) and cough (41%). 

Raised white blood cell count (26%), lymphopaenia 
(33%), and raised C reactive protein levels (49%) were the 
most common laboratory findings. They also found that 
pregnant women were more likely to be asymptomatic 
than non-pregnant women of reproductive age. Further-
more, they found that increased maternal age, high BMI, 
non-white ethnicity, and preexisting comorbidities were 
all associated with severe disease. Pregnant women with 
COVID-19 were found to be at increased risk of death, 
admission to ICU, delivering preterm, and having their 
neonates admitted to NICU. The determined factors 
related to adverse outcomes from this meta-analysis draw 

Fig. 4 Area under ROC curve (AUC-ROC) plot for Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), 
XGBoost, and AdaBoost models

Table 4 Model performance

Accuracy (%) Recall Precision F1 AUC 

Support Vector Machine (SVM) 81.0 0.78 0.84 0.81 0.81 (95% CI 0.73 to 0.88)

k-Nearest Neighbour (KNN) 84.0 0.75 0.94 0.83 0.85 (95% CI 0.77 to 0.91)

Decision Tree 82.0 0.73 0.92 0.82 0.83 (95% CI 0.75 to 0.89)

Random Forest 89.0 0.85 0.94 0.89 0.90 (95% CI 0.83 to 0.95)

XGBoost 88.0 0.80 0.96 0.87 0.88 (95% CI 0.81 to 0.94)

AdaBoost 81.0 0.73 0.90 0.81 0.82 (95% CI 0.74 to 0.89)



Page 10 of 14Young et al. BMC Pregnancy and Childbirth          (2023) 23:553 

parallels with many of the features determined through 
feature selection and used to train our model. Differences 
include the inclusion of ethnicity as a factor to determine 
adverse outcome, and specific laboratory markers, such 
as C reactive protein and lymphopaenia. More recent 
studies assessing maternal vulnerability as a result of 
SARS-CoV-2 infection during pregnancy have consist-
ently determined pregnant individuals to be at higher 
risk of hospitalization [18]. Additionally, a 2021 multi-
national INTERCOVID study [19] which assessed the 
relationship between maternal factors such as gestational 
diabetes mellitus, diabetes mellitus, and maternal obe-
sity related to COVID-19 diagnosis. Interestingly, it was 
found that these conditions were associated with higher 
risk of COVID-19 disease severity, both of which were 
included within the features selected to train our prog-
nostication model.

Our algorithm significantly improves upon previously 
published AI techniques for COVID-19 prognosis. For 
example, Schöning et al [20] created a clinical score and 
ML model that predicted the likelihood of severe disease 
courses from SARS-CoV-2, where a severe outcome was 
defined as admission to ICU and/or death. The meas-
ured metrics in the validation cohort included an AUC 
of 0.85, positive predictive value (PPV) of 0.91, and nega-
tive predictive value (NPV) of 0.81. However, this study 
was limited by poor censoring of outcomes (given there 

was no explicit follow-up), a small sample size (n = 657) 
and no laboratory data available for included subjects. 
Similarly, Rechtman et  al [21] developed an XGBoost 
model for the prediction of COVID-19 mortality using 
8770 confirmed SARS-CoV-2 cases, including demo-
graphic, clinical, and comorbidity variables taken from 
all Mount Sinai Health System facilities in New York, 
USA. Cross-validation results yielded an AUC of 0.86 
when combining effective predictors. However, this study 
was limited by poor generalizability due to the absence 
of widespread testing at the time of algorithm develop-
ment, with only severe cases of COVID-19 included in 
the model. Moreover, there was limited access to ICU 
admission and oxygen support information, thereby lim-
iting the number of patients with severe outcomes that 
were included in the model. Our algorithm leverages a 
large, varied dataset with detailed follow-up results and 
obtains competitive performance or outperforms the 
existing systems. By using a Random Forest model, a type 
of Ensemble Learning approach, we were able to over-
come the challenges of high disease course variability to 
accomplish high COVID-19 prognostication accuracy 
[22]. This problem of generalizability is common in stud-
ies attempting to create mortality prediction algorithms 
[21, 23, 24] and is often caused by data sparsity, leading to 
a lack of validation from external healthcare systems [25]. 
The use of Random Forest for the wrapper-based feature 

Fig. 5 Confusion matrices of developed ML models. For each matrix, the top left box represents true negatives, top right false negatives, bottom 
left false positives, and bottom right true positives
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selection technique allows for better model building with 
a large number of clinical features, however also serves 
as a limitation due to the fact that using the same algo-
rithm at both feature selection and learning stages can 
inflate performance results [26]. Although studies may 
find promising performance results in the training phase 
using COVID-19 repositories, this does not guarantee 
the generalizability of the algorithm. As such, including 
diverse care settings or geographic regions can consider-
ably improve the generalizability of the algorithm [27]. 
Therefore, our study set out to retrieve data from sepa-
rate sources of different geographic locations to allow 
for evaluation on more diverse representative data. Of 
these sources, the CRONOS repository contained data 
from centers throughout Germany and Austria, thereby 
furthering the geographical variability of our repository. 
The large size and diversity of our international reposi-
tory allowed for the development of a trained ensemble 
algorithm capable of providing accurate outcomes using 
a combination of data input parameters.

Nevertheless, this study has several limitations. Firstly, 
the repository included patient data only for individuals 
who either sought medical care because of SARS-CoV-2 
infection or were found positive on testing prior to giving 
birth. Our data may not be a real reflection of the general 
population of pregnant women affected by COVID-19, 
since health and lifestyle factors may differ in demograph-
ics without access to medical care. Canada, Germany, 
and Austria are predominantly white countries, which 
may result in the presence of racial bias in the model [28] 
Therefore, we do not recommend widespread use of this 
algorithm before future advancements allow for it to be 
validated in diverse populations. Future advancements 
of this model aim to diversify and expand the patient 
demographics in newly obtained data, including racial 
diversification. Next, as shown in Table 3, the percentage 
of participants with adverse outcomes differed between 
the two data sources. There could be several reasons 
for differences in outcomes between the two datasets. 
First, CRONOS is a large registry with a broad range of 
patients from Germany and Austria. Mount Sinai Hospi-
tal is a tertiary level hospital in Toronto, Canada which 
serves as a referral centre for the Greater Toronto Area. 
The patient population here is a higher-risk population 
than in the CRONOS registry. The protocols for each 
registry differ greatly, as CRONOS is a prospective data-
base from over 100 sites, including those admitted and 
those not requiring admission. MSH, on the other hand, 
is a list of very sick people admitted to the hospital, not 
necessarily including everyone who screened positive. 
CRONOS was a universal screening, whereas MSH was a 
symptom-based screening and, therefore, was not a com-
prehensive list of everyone that may have tested positive. 

By including these vastly different data sources, we were 
able to obtain a good balance between “population-
based” and “hospital-based” screening, thus providing a 
rich dataset of cases with varying severity to inform the 
model. As such, our algorithm is based on data obtained 
from both a high and a low-risk population. Further-
more, one of the adverse outcome features used was 
admission of the neonate to the NICU due to maternal 
SARS-CoV-2 infection. However, the reasoning for this 
admission may vary across different hospitals and health 
centers, depending on local regulations. For example, 
NICU admission may be cautionary only at some centres, 
while in others it may be due to a medical need. Such var-
iable definition limits the accuracy of the model, which 
could potentially incorrectly-label patients with adverse 
outcomes, depending on one’s interpretation. Similarly, 
another variable defining adverse outcome is described 
as the patient is “extremely critically ill”. This variable 
is also subject to inter-subject variability and differing 
interpretations, as there is no objective or quantifiable 
threshold to help define it. It should also be noted that, 
as with most machine learning models, the exclusion of 
certain feature inputs when calculating a patient’s risk 
may result in a deterioration of the model’s performance. 
Therefore, collection of all input features (as outlined in 
the Study and Population section) should be undertaken 
to ensure maximal model performance. The features we 
utilise with this model are routine in obstetrics and, thus, 
should be readily available in most non-emergency cases, 
making our algorithm usable in a typical pregnancy. Our 
algorithm is not intended to be used in emergency cases, 
where these features are most likely to be missing, as the 
emergency will merit immediate medical intervention 
regardless of the predicted future risk.

The absence of vaccination status as an input feature 
to the model serves as an additional limitation. mRNA 
vaccination has shown to be effective and safe for reduc-
ing the severity of COVID-19 in pregnancy [29]. Recent 
observational studies have evaluated COVID-19 vac-
cine effectiveness in pregnant patients during the first 
6  months of omicron as the variant of concern [30]. 
Administration of complete or boosted vaccines were 
found to reduce the risk for severe symptoms, compli-
cations, and death [30]. Another 2023 study determined 
vaccination to be highly effective against delta variants 
when infected during gestation, and moderately effec-
tive against omicron [31]. This being said, the inclusion 
of vaccination status as a feature for model training using 
more recent patient data would likely be indispensa-
ble for the model, and serve as an important factor in 
prognostication. Unfortunately, the data collected for 
the training of this model was done so prior to the avail-
ability of any vaccines. Additional data were provided for 
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the CRONOS repository later in the course of this pro-
ject, which included 1013 patients with known vaccina-
tion status. This vaccine variable contained ambiguity as 
to whether the patients received one or multiple doses. 
After this additional data were preprocessed, the vacci-
nation feature was deemed unnecessary by the feature 
selection algorithm and thus was eliminated. The ambi-
guity of the feature may attest to its elimination, and 
provision of a more concise feature (indicating number 
of doses received) may be more impactful for our future 
model advancements. Therefore, the inclusion of vacci-
nation status as an input feature for this prognostication 
model does not necessarily allow for a higher-accuracy 
model. However, future studies will attempt to advance 
this model by expanding the data repository to include 
populations from broader global regions. The expanded 
data repository will also aim at acquiring vaccination 
status as a multi-class variable reflecting the number of 
doses received. With this improved dataset, the vaccina-
tion feature may have a greater impact on adverse out-
come prediction. While we attempted to increase the 
heterogeneity of our dataset by including patient data 
from three different countries, we hope to train our 
algorithm with data from additional countries to further 
broaden the generalizability of our algorithm. Ultimately, 
we plan to develop an accessible user interface platform 
for healthcare providers and patients to input relevant 
pregnancy parameters that will provide a meaningful 
prediction of risk.

In conclusion, we demonstrated that clinical data can 
effectively predict disease severity in pregnant patients 
with SARS-CoV-2 infection. The intention is to use the 
algorithm at the point of a first positive test. However, 
knowing that risk is dynamic, the algorithm should be 
used each time the clinical condition changes, for e.g., if 
there are worsening respiratory symptoms or a new preg-
nancy-related clinical finding. Implementation of this 
platform and continued validation through international 
use could significantly improve the ability of healthcare 
providers to identify, manage, and treat the disease in 
pregnant people worldwide.
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