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underlying the altered fetal heart rate after CSE with 
opioids remains elusive; however, uterine hypertonicity 
secondary to a rapid drop in plasma catecholamine lev-
els may be the culprit [4]. The effect of neuraxial medi-
cations on fetal heart rate is poorly understood. It is 
unknown whether any differences in risk exist between 
fentanyl and bupivacaine when used in CSE procedures. 
There are reports of uterine hyperactivity and fetal bra-
dycardia following subarachnoid administration of fen-
tanyl during labor [5].

Given the multifactorial nature of changes in fetal 
heart rate during labor, our study aims to perform sta-
tistical inference and prediction of changes in fetal heart 
rate during active labor in healthy pregnant women by 
comparing three different machine learning methods: 

Background
Labor combined spinal-epidural (CSE) is associated 
with rapid onset of analgesia [1]. CSE is associated with 
increased risk of fetal bradycardia in the absence of 
maternal hypotension [2]. Although a multivariate analy-
sis revealed that only pain scores and maternal age were 
independent predictors of fetal bradycardia after neur-
axial blockade, there is still controversy regarding the 
contribution of CSE to this outcome [3]. The mechanism 
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Abstract
Background  Neuraxial labor analgesia has been associated with fetal heart rate changes. Fetal bradycardia is 
multifactorial, and predicting it poses a significant challenge to clinicians. Machine learning algorithms may assist the 
clinician to predict fetal bradycardia and identify predictors associated with its presentation.

Methods  A retrospective analysis of 1077 healthy laboring parturients receiving neuraxial analgesia was conducted. 
We compared a principal components regression model with tree-based random forest, ridge regression, multiple 
regression, a general additive model, and elastic net in terms of prediction accuracy and interpretability for inference 
purposes.

Results  Multiple regression identified combined spinal-epidural (CSE) (p = 0.02), interaction between CSE and dose 
of phenylephrine (p < 0.0001), decelerations (p < 0.001), and the total dose of bupivacaine (p = 0.03) as associated with 
decrease in fetal heart rate. Random forest exhibited good predictive accuracy (mean standard error of 0.92).

Conclusion  Use of CSE, presence of decelerations, total dose of bupivacaine, and total dose of vasopressors after CSE 
are associated with decreases in fetal heart rate in healthy parturients during labor. Prediction of changes in fetal heart 
rate can be approached with a tree-based random forest model with good accuracy with important variables that are 
key for the prediction, such as CSE, BMI, duration of stage 1 of labor, and dose of bupivacaine.

Keywords  Fetal heart rate, Anesthesia and Analgesia, Machine learning

Fetal heart rate changes and labor neuraxial 
analgesia: a machine learning approach
Efrain Riveros-Perez1*, Javier Jose Polania-Gutierrez1 and Bibiana Avella-Molano1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12884-023-05632-3&domain=pdf&date_stamp=2023-5-6


Page 2 of 7Riveros-Perez et al. BMC Pregnancy and Childbirth          (2023) 23:329 

multiple linear regression, splines, and elastic lasso. 
We aim to identify the contribution of different predic-
tive factors to changes in fetal heart rate in the context 
of normal labor and create an accurate model to predict 
those changes in future parturients scheduled for vaginal 
delivery.

Methods
This study has been reported according to the STROBE 
guidelines [6]. According to the Declaration of Helsinki 
was registered at https://clinicaltrials.gov/, under the 
registration code NCT05399979. After approval by the 
Augusta University Committee A Review Board (Pro-
tocol #: 1,567,908. 03/16/2021), a retrospective chart 
review was conducted for healthy parturients admitted 
for vaginal delivery between November 2017 and August 
2020. In agreement with the American Society of Anes-
thesiologists (ASA), we defined healthy pregnant patients 
as an ASA Physical Status Classification system II [7]. 
Information for the study was obtained from the institu-
tional electronic information system of Augusta Univer-
sity Medical Center. Patients older than 18 years old with 
healthy term pregnancies (> 37 weeks) were included. 
Patients with baseline systolic blood pressure < 90 and 
diastolic blood pressure < 60, maternal fever, and uter-
ine tachysystole > 5 contractions in 10  min before neur-
axial block were excluded. Also, patients with American 
College of Obstetricians and Gynecologists (ACOG) 
category III fetal heart rate tracing were excluded. After 
neuraxial block, a wedge was placed under the patient 
and adequate hydration was ensured as preventive mea-
sures. Lateral positioning was exclusively used in patients 
with non-reassuring tracing, as it may provoke sensory 
block asymmetry.Prenatal and maternal variables were 
obtained from the institutional health.

documentation system. Variables recorded included 
age, weight, height, body mass index (BMI), race, number 
of pregnancies and prior deliveries, gestational age, cer-
vical dilatation, oxytocin use, neuraxial block type used, 
neuraxial medications employed, fentanyl, morphine, and 
bupivacaine dose used in the initial bolus, hemodynamic 
variables, vasopressors use, and fetal heart rate variables. 
The dataset was de-identified after the data collection.

Regression methods
We compared a principal components regression model 
with tree-based random forest, ridge regression, mul-
tiple regression, a general additive model, and elastic 
net in terms of prediction accuracy and interpretabil-
ity for inference purposes. Accuracy performance was 
evaluated with mean square error (MSE). Model cod-
ing and performance estimation, and general statistical 
analysis are provided as part of the R packages available 
from the Comprehensive R Archive Network (https://

cran.r-project.org/web/packages/). The specific packages 
employed are referenced below in the corresponding sec-
tion for each statistical learning method.

Principal components regression
Principal components regression (PCR) is a dimensional-
ity reduction method that uses the technique of princi-
pal components analysis (PCA). In the context of a linear 
relationship between predictors and response, reducing 
dimensionality leads to a reduction in variance at a rela-
tively low cost of bias for the statistical learning method 
used. PCR is a linear approximation that uses new coor-
dinates (principal components) to contain most of the 
information present in the predictors. The new principal 
components are then used to fit a least-squares linear 
model [8, 9]. A more detailed description of the method 
and mathematical background is found in the supple-
mental material 1. The R “pls” package was used to fit the 
PCR model (https://cran.r-project.org/web/packages/
pls/index.html).

Random forest
The random forest algorithm is a supervised learning 
method used for regression and classification problems. 
It breaks the feature space into small fractions to grow 
a randomized tree predictor on each piece of data and 
then aggregates those predictors together [10, 11]. The 
method entails bootstrap aggregation (bagging) to build 
regression trees. Since every new sample created by boot-
strap uses all predictors, it would be expected for those 
predictors to be correlated. The random forest algorithm 
involves random selection of a limited number of predic-
tors every time a new decision tree is created, reducing 
the tree correlation. The result is a robust method with 
good prediction accuracy. The mathematical foundations 
of this method can be found in the supplemental material 
1. The R package “randomForest” was used to build the 
forest in this study.

Ridge regression
Linear models are easy to interpret and simple to under-
stand; however, they may be associated with overfit-
ting depending on sample size and data distribution. To 
mitigate this risk, different methodologies aim at reduc-
ing variance without a concomitant increase in bias to 
improve model prediction accuracy. One of those tech-
niques is ridge regression. Ridge regression uses shrink-
age of linear regression coefficients without getting to the 
point of selecting variables [12, 13]. In many problems 
where data are not obtained from experimental design, 
non-orthogonality of predictor variables makes it impos-
sible to assign proper weight to the individual features, 
thereby limiting the predictive accuracy of a linear model. 
Ridge regression employs a penalty function governed 
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by a tuning parameter that affects the loss function of 
residual sum of squares of linear regression. As the tun-
ing parameter increases, the model becomes less flexible, 
leading to lower variance and higher bias. The ideal value 
for the tuning parameter optimizes the bias-variance 
trade-off. The mathematical foundations of this method 
can be found in the supplemental material 1. The R pack-
age “glmnet” was used to fit ridge regression in this study.

Multiple regression
We used multiple linear regression to detect relation-
ships between multiple predictors (categorical and con-
tinuous) on the fetal heart rate decrease and their relative 
importance. Backward variable selection was performed 
to identify independent variables. For deleting variables, 
the F ratio criterion was 4.0, which is the squared value of 
a t-test for the hypothesis that the coefficient of the pre-
dictor in question equals zero. A p-value less than 0.05 
was considered statistically significant.

General additive model
General additive models (GAM) extend the linear regres-
sion models to include non-linear relationships between 
some or all features and the response [12, 13]. A non-
linear function is applied and is different for each fea-
ture. Although non-linearity is part of the function, the 
interpretation is still part of the linear framework. The 
functions are nonparametric in the sense that the shape 
of predictor functions is determined by data directly and 
not by a small set of parameters. This allows for predic-
tion without knowing the patterns beforehand. The func-
tion can be expressed in terms of coefficients as weights 
and a basis expansion. The basis expansion introduces 
non-linearity into each predictor-response relationship 
and corresponds to the general term of spline. Splines are 

smooth functions that can be understood as polynomi-
als that cover a small range. The number of splines is a 
parameter that needs to be defined when this model is 
used. The parameter λ penalizes the splines. As λ value 
increases, the spline gets smoother until it becomes a 
straight line. The optimal value for λ is determined by 
cross-validation.

Elastic net
Elastic net regression is a regularization method that uses 
the penalization of lasso and ridge regression on the loss 
function of ordinary least squares (OLS) regression [14, 
15]. Elastic net improves the lasso limitations. It incorpo-
rates a quadratic component to the penalty function (the 
ridge regression component) to make the lasso constraint 
more convex. The procedure to find the elastic net coef-
ficient estimates starts with the calculation of the ridge 
regression coefficients followed by shrinkage of those 
coefficients using the lasso algorithm. Elastic net per-
forms well when there are highly correlated independent 
variables. During the shrinkage procedure, the L1 norm 
of the lasso selects variables. On the other hand, the L2 
norm of ridge regression makes the L1 component of the 
penalty more stable.

Results
Patient characteristics
Our database consisted of 1077 patients admitted to the 
labor and delivery unit. A total of 39 predictors includ-
ing demographic (age, race, and anthropometric mea-
sures), obstetric (gravidity, parity, weeks of gestation, and 
contractions), anesthetic (type of neuraxial block and 
medications), and hemodynamic (maternal blood pres-
sure, heart rate, and vasopressors need) variables were 
collected for each patient. The demographic variables 
are reported as mean +/- SD and frequency (%) where 
appropriate (Table 1). The incidence of fetal bradycardia 
and prolonged deceleration was 56 cases per 1000 partu-
rients per year. The response variable was the percentage 
decrease in fetal heart rate after administration of neur-
axial labor analgesia. The dataset was randomly split into 
training and test sets.

Model fitting and error
We started by fitting a multiple regression model, 
where we identified a statistically significant associa-
tion between percentage decrease in fetal heart rate and 
presence of decelerations before the neuraxial block 
(p < 0.001), vasopressor dose required to stabilize blood 
pressure (p < 0.001), performance of combined spinal-
epidural (p = 0.015), and intrathecal bupivacaine dose 
(p = 0.03). In order to improve the interpretability of 
the model, we limited the number of predictors and 
were able to observe two findings. First, CSE (p = 0.02), 

Table 1  Demographic Characteristics
Variables Mean 

+/- SD
Frequency 
(%)

Age 27 +/- 6.2 -

Weight 87.1 
+/- 20.2

-

Height 162.9 
+/- 7.7

-

BMI 32.8 +/- 7.7 -

Race

African american - 542 (50.2%)

White - 420 (38.9%)

Hispanic - 82 (7.6%)

Asian - 28 (2.6%)

Indian - 6 (0.5%)

CSE - 472 (43.8%)

Latent phase of labor (< 4 cm of dilation) - 344 (31.9%)
CI, confidence interval. Mean (SD) for continuous variables and frequency (%) 
for categorical variables. BMI, Body mass index. CSE, combined spinal-epidural
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interaction between CSE and phenylephrine dose 
(p < 0.0001), decelerations (p < 0.001), and the total bupi-
vacaine dose (p = 0.03) affect the response variable in 
a statistically significant manner. Second, the adjusted 
R-square is low (0.08), indicating significant variability 
in the data. This latter finding can be explained by addi-
tional predictors not included in the original model and 
the lack of linearity in the association between predic-
tors and response. Multiple regression, in this case, is a 
model that helps us make statistical inferences about the 
association, but its predictive precision is poor. For this 
reason, we explored other statistical learning methods for 
prediction purposes.

We performed a PCR analysis after scaling the vari-
ables. The first two principal components account for 
98.5% of the variance (information contained in the data). 
MSE defined as the average of residual sum of squares, 
is minimized when we use 13 principal components 
(MSE = 42.93) (Fig. 1).

Random forest algorithm with 13 predictors random-
ized per split showed MSE of 0.92. The variables iden-
tified in order of importance based on MSE and node 
purity were duration of stage 1 of labor, BMI, CSE use, 
and intrathecal bupivacaine dose (Fig. 2). Random forest 
exhibited a significantly better predictive accuracy than 
PCR and identified two predictors that were statistically 

Fig. 2  Variable importance. Random forest model. %IncMSE, percentage 
contribution to mean square error reduction. BMI, Body mass index. CSE, 
Combined spinal and epidural. Bupi, Bupivacaine. IT, intrathecal

 

Fig. 1  Mean square error (MSE) as a function of the number of components. Minimum MSE with 13 principal components
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significant with multiple regression (CSE and bupiva-
caine dose).

Ridge regression using a penalty function showed a λ 
parameter of 15.79 associated with the minimum MSE 
found by cross-validation. The minimum MSE was 42.08, 
comparable to the one found by PCR. The general addi-
tive model using splines for the continuous variables 
showed a value for MSE of 42.05, whereas the elastic net 
that combines the penalty function of ridge and the lasso 
showed MSE of 43.1.

Discussion
Changes in fetal heart rate during labor after adminis-
tration of neuraxial analgesia represent a complex and 
multifactorial challenge [3]. Severe drops in fetal heart 
rate are associated with adverse neonatal outcomes [16, 
17]. Fetal bradycardia has been observed after neuraxial 
labor analgesia via a mechanism involving uterine hyper-
tonus mediated by catecholamine levels [18, 19]. Isola-
tion of individual causative factors for the development 
of changes in fetal heart rate after labor analgesia has 
been elusive, and identification of those patients at risk 
for fetal bradycardia continues to represent a challenge 
to clinicians [3, 4]. The introduction of artificial intel-
ligence algorithms to solve medical problems is a novel 
addition to the clinical decision-making process. The sta-
tistical learning methods presented here provide valuable 
insight into the multiple factors associated with changes 
in fetal heart rate. These methods may also help predict 
decreases in fetal heart rate after neuraxial labor analge-
sia in clinical practice.

The multiple regression model showed the relationship 
between several predictors and the response variable. 
Although the role of the model to explain the response 
variable is poor (low adjusted-R2), the statistical sig-
nificance for the coefficients of CSE, total bupivacaine 
dose, decelerations, and the total phenylephrine dose in 
the presence of CSE demonstrates that there is a defi-
nite trend for such features. Adjusted-R2 represents the 
scatter around the regression line, and its low value in 
our study highlights the significant variability between 
individuals and the possible contribution of factors not 
included in the model. Considering that fetal bradycar-
dia may occur in 1.1% of normal labor [20], confirma-
tory analysis of our findings using a larger sample would 
be required to recommend using our multiple regres-
sion model as a predictive tool [21]. Although prolonged 
decelerations may be an incidental finding without clini-
cal repercussions, it may also denote a fetus at increased 
risk of developing fetal distress [22]. We may argue that 
the predictors cited above could help identify patients 
who may develop fetal bradycardia during labor and 
monitor these patients closely for fetal distress signs.

Combined spinal-epidural has been associated with 
fetal bradycardia [22]. Cheng et al. found that the degree 
of sympathetic block and pain relief are risk factors for 
fetal bradycardia after CSE [23]. Yang et al. proposed that 
fetal bradycardia after CSE occurs due to loss of tocolytic 
effect of catecholamines leading to uterine hypertonus 
[24]. Our findings align with the catecholamine suppres-
sion hypothesis after CSE as fetal heart rate decreases 
in direct relation to intrathecal bupivacaine dose. Fur-
thermore, hypotension may contribute to the fetal bra-
dycardia. Although the phenylephrine dose was not 
statistically significant, it is significant when combined 
with CSE. This finding might be a surrogate outcome 
for the role of hypotension on the development of fetal 
bradycardia. Hence, it highlights the importance of pre-
ventative measures to avoid hypotension when using CSE 
technique for labor analgesia.

Our study demonstrates that the relationship between 
the evaluated predictors and the response variable is 
non-linear. PCR reduces the number of dimensions 
while keeping most of the information and variability 
contained in the predictors. Our study shows that most 
of the information is contained in the first two principal 
components; however, the minimum error is obtained 
with 13 principal components. This is because even 
directions with low eigenvalues contribute significantly 
to the model’s predictive value [25]. PCR is still a linear 
model that uses directions as the new predictors. When 
we compare the mean square error of PCR with that of 
ridge regression, some similarities come to our atten-
tion. Both statistical learning methods use the informa-
tion contained in all the predictors without performing 
variable selection. The relatively large MSE exhibited by 
both PCR and ridge regression could be related to colin-
ear variables, inclusion of non-contributory features, 
or non-linear relationships. To clarify the cause for the 
large errors, we fit an elastic net model that combines 
ridge regression with the lasso. This model adds a certain 
degree of variable selection. Elastic net performed even 
worse in terms of prediction accuracy. This finding high-
lights the fact that although the contribution of some fea-
tures may be small, their contribution to prediction of a 
multifactorial response may still be important. We were 
then left with the possibility of having a non-linear rela-
tionship between predictors and response. A generalized 
additive model incorporating smoothing splines could 
not capture this non-linearity to its full extent. In con-
trast, the tree-based random forest model outperformed 
all other models as an accurate predictive tool.

Random forests have been used to classify abnormal-
ity of cardiotocograms in obstetrics with an accuracy of 
93% [26]. Arif et al. identified tracing variability-related 
factors, accelerations, and uterine contractions as the 
most important variables in their random forest model. 
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To our knowledge, our study is the first regression deci-
sion tree method used to predict changes in fetal heart 
rate after neuraxial analgesia. CSE and bupivacaine dose 
are among the most important variables identified by 
our random forest model, in agreement with the mul-
tiple regression findings. In addition, BMI and duration 
of stage 1 of labor were also at the top of variable impor-
tance to predict drops in fetal heart rate. The association 
between BMI and fetal heart rate may be due to techni-
cal factors such as the lack of reliability of the tracing due 
to body habitus [27]. On the other hand, maternal over-
weight and obesity affect the normal trajectory of fetal 
heart rate progression, which is amplified as pregnancy 
advances [28]. In addition, Liu et al. found that high BMI 
is associated with fetal bradycardia and adverse neona-
tal outcomes [29]. Finally, although no study has been 
published linking labor duration with fetal bradycardia, 
it is known that epidural analgesia prolongs the second 
stage of labor but not the first stage, whereas CSE may 
even shorten the first stage of labor. We may hypothesize 
that CSE and uterine effective contractions and hyper-
tonus may coexist, and both predictors may be linked. 
Although this mechanism cannot be gleaned from our 
study, the coexistence of CSE and duration of stage 1 
seem to work together to predict fetal heart changes in 
healthy pregnancies during labor.

Our study has several limitations. First, the retrospec-
tive nature of our analysis confers shortcomings to our 
study, such as information bias. Data entry into the insti-
tutional electronic information system occurs in real-
time at a 5-minute interval. Therefore, some variables 
change and recover between measurements and might 
not be captured. Second, given the complexity and mul-
tifactorial influences on fetal heart rate, our models may 
fall short by disregarding important variables that may 
affect the response. However, most of the relevant and 
easily available variables were included and provided 
excellent predictive accuracy when taken together by our 
random forest model. The main strength of our study lies 
in the simultaneous evaluation of inference and predic-
tion using different machine learning techniques. By 
comparing various models, we shed light on the nature 
of the relationships between predictors and response and 
on the variables implicated in these relationships. Also, 
we minimized the risk of overfitting by employing dataset 
splitting into training and test sets and using cross-val-
idation. Our work revolved around optimizing the bias-
variance trade-off for the different methods evaluated. 
Future research should focus on identifying additional 
variables that may be associated with the response so that 
our model can be further tuned up.

Conclusion
In conclusion, use of CSE, presence of decelerations, total 
dose of bupivacaine, and total dose of vasopressors after 
CSE are associated with decreases in fetal heart rate in 
healthy parturients during labor. Prediction of changes 
in fetal heart rate can be approached with a tree-based 
random forest model with good accuracy with impor-
tant variables that are key for the prediction, such as 
CSE, BMI, duration of stage 1 of labor, and dose of 
bupivacaine.
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