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Abstract
Purpose In this study, we explored the relationship of genes in HIF-1 signaling pathway with preeclampsia and 
establish a logistic regression model for diagnose preeclampsia using bioinformatics analysis.

Method Two microarray datasets GSE75010 and GSE35574 were downloaded from the Gene Expression Omnibus 
database, which was using for differential expression analysis. DEGs were performed the Gene Ontology (GO) analysis, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene set enrichment analysis 
(GSEA). Then we performed unsupervised consensus clustering analysis using genes in HIF-1 signaling pathway, and 
clinical features and immune cell infiltration were compared between these clusters, as well as the least absolute 
shrinkage and selection operator (LASSO) method to screened out key genes to constructed logistic regression 
model, and receiver operating characteristic (ROC) curve was plotted to evaluate the accuracy of the model.

Results 57 DEGs were identified, of which GO, KEGG and analysis GSEA showed DEGs were mostly involved in 
HIF-1 signaling pathway. Two subtypes were identified of preeclampsia and 7 genes in HIF1-signaling pathway were 
screened out to establish the logistic regression model for discrimination preeclampsia from controls, of which the 
AUC are 0.923 and 0.845 in training and validation datasets respectively.

Conclusion Seven genes (including MKNK1, ARNT, FLT1, SERPINE1, ENO3, LDHA, BCL2) were screen out to build 
potential diagnostic model of preeclampsia.
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infiltration

Diagnostic signature composed 
of seven genes in HIF-1 signaling pathway 
for preeclampsia
Xun Yang1, Ling Yu1, Yiling Ding1 and Mengyuan Yang1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12884-023-05559-9&domain=pdf&date_stamp=2023-4-4


Page 2 of 8Yang et al. BMC Pregnancy and Childbirth          (2023) 23:233 

Introduction
Preeclampsia, a disease that affects about 3–5% of all 
pregnancies worldwide, is one of the major causes of 
maternal and perinatal mobility and mortality globally [1, 
2]. Occurs to pregnant women after 20 gestational weeks, 
preeclampsia is characterized mostly by hypertension 
with blood pressure more than 140/90 mmHg, compli-
cates with proteinuria over 300 mg in 24 h [3]. Due to the 
endothelial disfunction in preeclampsia, extensive organs 
all over the body can be injured, including the liver, kid-
ney, blood system and brain [4]. As preeclampsia pro-
gresses, it turns to be eclampsia, a condition which is life 
threatening for both gravidas and fetus [5, 6].

As the heterogeneity of physiopathology in preeclamp-
sia, its etiology is not fully elucidated [7]. Previous 
researchers have found many biomarkers associated with 
preeclampsia such as sFlt-1 and PLGF, but their reliability 
to diagnosing preeclampsia is not sufficient, and progress 
with biomarkers studies remains limited [4, 8]. Conse-
quently, discovering novel biomarkers are necessary for 
the diagnosis of preeclampsia.

Although the mechanism underlying preeclampsia is 
still unclear, existing studies demonstrated that inflam-
mation and oxidative stress is an essential part of the 
physiopathology of preeclampsia [9]. Previous studies 
have reported that placenta hypoxia is associated with 
the pathogenesis of preeclampsia, while they mostly 
focus on hypoxia inducible factor [10, 11]. Few research 
has explored the relationship between HIF-1 signal-
ing pathway and preeclampsia. It has been researched 
that some genes of HIF1-sinaling pathway are related 
to inflammation and oxidative stress, so HIF1-signaling 
pathway might be involved in preeclampsia. Meanwhile, 
the results of our analysis showed that HIF-1 signaling 
pathway is associated with preeclampsia. In this study, 
we explored the genes of HIF-1 signaling pathway in pre-
eclampsia through bioinformatics method. Firstly, we try 
to grouping preeclampsia into different subtypes through 
HIF1-signaling pathways genes. Accordingly, clinical 
features and immune cell infiltration were compared 
between different subtypes, of which the results indicated 

that HIF1-signaling pathway might play a vital part in 
preeclampsia. Then we screened out seven genes (includ-
ing MKNK1, ARNT, FLT1, SERPINE1, ENO3, LDHA, 
BCL2) in HIF1-signaling pathway. It was the first time to 
use HIF-1 pathway for constructed a diagnostic model 
of preeclampsia, which could distinguish preeclampsia 
from controls with a good accuracy.

Methods
Data downloading and preprocessing
Two mRNA datasets including GSE75010 [12] and 
GSE35574 [13] was downloading from the Gene Expres-
sion Omnibus database (GEO, https://www.ncbi.nlm.
nih.gov/geo/). GSE75010 dataset included 157 placenta 
samples consisting of 80 placenta samples from pre-
eclampsia patients and 77 placenta samples from control 
patients. GSE35574 dataset included 94 placenta samples 
consisting of 35 placenta samples from IUGR patients, 
19 placenta samples from preeclampsia patients and 40 
placenta samples from control patients. Then we select 
the 19 preeclampsia and 40 control placenta samples of 
GSE35574 dataset for analysis. GSE75010 dataset was 
used as training dataset and GSE35574 dataset was used 
as the external validation dataset. Firstly, we transformed 
the probe numbers of the two datasets to gene symbols 
and remove the null probes using R language. Both of 
the two datasets were normalized by using Robust Multi-
Array Average (RMA) method, and then was log2 trans-
formed using R language. And HIF-1 signaling pathway 
genes were download from Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [14]. In GSE75010, preeclampsia 
was defined as the onset of systolic pressure ≥ 140 mmHg 
and/or diastolic pressure ≥ 90 mmHg after the 20th week 
of gestation, accompanied by proteinuria (greater than 
300 mg protein/day, or greater ≥ 2 + by dipstick). Patients 
with diabetes (pre-existing or gestational), sickle cell 
anemia and/or morbid obesity (BMI ≥ 40) were excluded 
(Table  1), and all samples came from singleton preg-
nancies [12]. And in GSE35574, the PE was defined as a 
sustained (≥ 2 measures 6 h apart) blood pressure eleva-
tion (> 140/90 mm Hg) > 20 weeks of gestation with pro-
teinuria defined as a sustained (≥ 2 measures 4  h apart) 
presence of elevated protein in the urine (> 30 mg/dL or 
> 1 + on a urine dipstick) [13]. Because all data for this 
study were obtained from public databases, the study did 
not require the institutional review board approval.

Differential expression analysis
Limma packages [15] was using in R language to perform 
the differential expression analysis between preeclampsia 
samples and control samples of GSE75010 datasets. Dif-
ferential expressed genes (DEGs) were considered as sig-
nificant when the |fold change (FC)| > 1.5 and adjusted P 

Table 1 Clinical characteristics of GSE75010
Characteristic Control (n = 77) PE (n = 80) p value
Delivery weeks 34 + 3 32 + 5 0.012

Maternal age 33.2 33.2 0.995

Maternal bmi 24.5 26.5 0.026

Maximum diastolic bp 85.3 107 < 0.001

Maximum systolic bp 136 170 < 0.001

Proteinuria 0.45 2.59 < 0.001

Umbilical cord diameter 1.21 1.16 0.38

Mode of delivery 0.053

C-Section 50(64.9%) 64(80.0%)

Vaginal 27(35.1%) 16(20.0%)

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Page 3 of 8Yang et al. BMC Pregnancy and Childbirth          (2023) 23:233 

value < 0.05. The visualization of these genes was plotted 
using “pheatmap” and “ggpuber” package in R.

Functional Enrichment analysis of DEGs
Functional enrichment analysis were performed Gene 
Ontology (GO) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [14] pathway enrichment 
analysis and Gene set enrichment analysis (GSEA) was 
also performed using “clusterProfiler” in R language [16]. 
P value < 0.05 was dimmed as significant. The results of 
these analysis were plotted via “ggplot2” package in R.

Analysis of unsupervised consensus clustering and 
immune cell infiltration
Unsupervised consensus clustering analysis was per-
formed in the 80 placenta samples from preeclamp-
sia patients in GSE75010 to elucidate the relationship 
between genes in HIF-1 signaling pathway and pre-
eclampsia subtypes using “ConsensusClusterPlus” pack-
age [17] in R language with hierarchical clustering, 
pearson distance, maxK = 10, reps = 1000, pItem = 0.8, 
and pFeature = 0.8. The clinical features between these 
clusters were compared after consensus clustering with 
Wilcoxon rank sum tests. Moreover, immune cell infiltra-
tion analysis was performed by Cibersort algorithm using 
“IOBR” package [18] with perm = 1000 and QN = T to elu-
cidate the composition of immune cells between these 
clusters.

Construction of logistic regression model
The least absolute shrinkage and selection operator 
(LASSO) method was performed using “glmnet” package 
[19] with family = binomial, nlambda = 1000 and alpha = 1 
in R language to screen out genes to construct logistic 
regression model. Then the genes were using to construct 
logistic regression model in GSE75010 training dataset 
using package “nnet” [20]. Then, receiver operating char-
acteristic (ROC) curve using package “ROCR” [21] was 
plotted to evaluate the reliability of the logistic regression 
model. Furthermore, the GSE35574 dataset was used as 
the external validation dataset.

Results
Differential expressed genes in GSE75010 dataset
Differential expression analysis was performed between 
preeclampsia samples and control samples in GSE75010 
datasets. 57 differential expressed genes are screen out, 
which are composed of 46 upregulated genes and 11 
downregulated genes (Fig. 1).

Functional Enrichment Analysis
To illustrate the function of DEGs, we performed GO and 
KEGG enrichment analyses and GSEA. The outcomes of 
GO analyses showed that DEGs were most significantly 
enriched in biological process (BP) such as “regulation 
of gonadotropin secretion”, in cellular component (CC) 
such as “secretory granule lumen” and in molecular func-
tion (MF) such as “hormone activity”. The result of KEGG 
analyses showed that DEGs were mainly enriched in 

Fig. 1 The DEGs between preeclampsia and control placenta of GSE75010 datasets. (a) The heatmap of the 57 DEGs. The horizontal axis represents 
samples and the vertical axis represents genes. The color indicates the gene expression values. (b) The volcano plot. Each point represents a gene, and 
red ones represent upregulated genes, while blue ones represent downregulated gene
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HIF-1 signaling pathway and neuroactive ligand-receptor 
interaction. And then, the results of GSEA also enriched 
in HIF-1 signaling pathway, which reveal that HIF-1 sig-
naling pathway may play an important role in preeclamp-
sia (Fig. 2).

Identification of HIF subtypes of preeclampsia
According to the expression level of genes in HIF-1 sig-
naling pathway, the 80 preeclampsia patients in data-
set GSE75010 were divided into two subtypes: Cluster1 
(n = 44), and Cluster2 (n = 36) (Fig. 3a, b). Then the clini-
cal features between two clusters were compared, the 
gestation weeks, mean uterine pulsatility index (PI), 
and mean umbilical pulsatility index (PI) of cluster1 

Fig. 2 The results of the Functional Enrichment Analysis in GSE75010 datasets. a, b. The Gene Ontology (GO) analysis and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis. The horizontal axis is gene counts and the vertical axis is pathways. c. The Gene set enrichment 
analysis (GSEA). The horizontal axis is gene ratio and the vertical axis is pathways. The activated part is the GSEA results of upregulated genes and the sup-
pressed part is the GSEA results of the downregulated genes. d. The HIF-1 signaling pathway enriched in GSE75010, which shows significant difference 
between preeclampsia and healthy samples
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Fig. 3 The results of consensus clustering analysis and the comparison of the features between the two cluster. (a) Consensus clustering matrix when 
k = 2. (b) The delta area plot of consensus clustering, which indicates the best k value is 2. (c) The comparison of the clinical features between the two 
clusters. (d) The immune infiltration levels in the two clusters (*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001)
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significantly different with cluster2, while there are no 
significantly different with proteinuria and mean arterial 
pressure within two classes (Fig. 3c). From the results of 
the clinical features comparison between the two clus-
ters, we could draw the conclusion that cluster1 might 
have worse prognosis than cluster2. Moreover, using the 
Cibersort algorithm, we analyzed the immune cell infil-
tration in the two clusters, which showed significant dif-
ference in T cells CD8, T cells CD4 memory resting, T 
cells regulatory (Tregs), Monocytes, Macrophages M2, 
Dendritic cells activated and Neutrophils (Fig. 3d).

Construction and validation of the diagnostic genes 
signature
Then the LASSO regression model was employed to 
screen for the most robust biomarkers to create an HIF-1 
signaling pathway genes-related diagnostic signature in 
the training set GSE75010 (Fig.  4a). Seven genes were 
identified to construct the diagnostic signature: MKNK1, 
ARNT, FLT1, SERPINE1, ENO3, LDHA, BCL2. And 
Logistic regression model was constructed with the seven 
genes in the training set GSE75010. To confirm the accu-
racy of the model, we plot the ROC curves of the model 
in two datasets. The area under curve (AUC) values in 
the training set GSE75010 and validation set GSE35574 
were 0.923 and 0.845, respectively (Fig. 4b).

Discussion
Preeclampsia is a heterogeneous, pregnancy-specific 
syndrome clinically characterized by the development 
of hypertension and proteinuria, as well as the leading 
cause of maternal and perinatal mortality and morbidity. 

Although the etiology of preeclampsia remains largely 
unclear, the main hypotheses strongly rely on dis-
turbed placental function pregnancy. As placenta is the 
key organ involved in preeclampsia, analysis of genes 
expressed in placenta become a vital way to explore the 
molecular mechanism underlying preeclampsia, contrib-
uting to the discovery of potential biomarkers for diag-
nostic and therapeutic targets [1, 4].

We analyzed the gene expression profiles of placenta 
samples between preeclampsia and controls, and 57 
differentially expressed genes were identified. Consis-
tent with published data, the results of enrichment of 
these DEGs confirm their involvement in the develop-
ment of preeclampsia, such as HIF1-signaling pathway, 
MAPK signaling pathway, cytokine-cytokine receptor 
interaction, which suggest that Inflammation and oxida-
tive stress is important in preeclampsia [22, 23]. It has 
been widely accepted that Inflammation and oxidative 
stress are vital processes concerned with placental isch-
emia and hypoxia in the development of preeclampsia, 
and part of genes in HIF1-signaling pathway are closely 
related to inflammation and oxidative stress. Precious 
study indicated that p38 MAPK plays a vital role in PE 
progression [24]. It has been reported HIF-1β is essen-
tial for the elevated production of sFLT1 in the hypoxic 
trophoblasts [10]. Based on these reports, along with our 
results of the enrichment analysis and subtyping analysis, 
HIF1-signaling pathway might play a part in the patho-
genesis of preeclampsia.

Then we perform consensus clustering analysis of 
genes in HIF1-signaling pathways, and two clusters were 
divided. Clinical manifestations were compared between 

Fig. 4 (a) The genes selection using lasso method. (b) The ROC curve of training datasets GSE75010 and validation datasets GSE35574

 



Page 7 of 8Yang et al. BMC Pregnancy and Childbirth          (2023) 23:233 

the two clusters, the results of which showed that the 
cluster1 has significantly less gestation weeks than clus-
ter2 did, at the same time, the mean uterine pulsatility 
index (PI) and mean umbilical pulsatility index (PI) in 
cluster1 were significantly higher than in cluster2, which 
indicated that cluster1 might have a worse prognosis than 
cluster2. Additionally, the composition of 22 immune 
cells were calculated, and 7 immune cells, namely, T cells 
CD8, T cells CD4 memory resting, T cells regulatory 
(Tregs), monocytes, macrophages M2, dendritic cells 
activated and neutrophils, were significantly different 
between the two clusters. Previous studies had found that 
T cells CD8 are crucial for immune tolerance and immu-
nity, and infiltration of T cells CD8 into the placental 
villous tissue was a feature in abnormal placenta of pre-
eclampsia [25, 26]. T cells regulatory (Tregs), a subset of 
suppressor CD4(+) T cells, play a vital role in the main-
taining of immune balance of maternal-fetus interface, 
which are involved in the development of preeclampsia 
[27, 28]. Monocytes are found in most human tissues, 
which can differentiate to macrophages such as macro-
phages M1 and macrophages M2. Macrophages M1 and 
Macrophages M2 participate in the proinflammatory 
and anti-inflammatory activity respectively, what`s more, 
their alteration of polarity is associated with preeclamp-
sia [29]. Neutrophils has been reported to produce mas-
sive reactive oxygen species (ROS) in the development of 
preeclampsia [30]. On the whole, immune cell infiltration 
plays an important role in preeclampsia, and the differ-
ences between the two HIF-1 associated clusters indi-
cated that HIF-1 signaling pathway might have a crucial 
role in the pathophysiology of preeclampsia.

Moreover, seven genes in HIF-1 signaling pathways 
were screened out with LASSO to construct the logistic 
regression model including MKNK1, ARNT, FLT1, SER-
PINE1, ENO3, LDHA, BCL2. MKNK1 was found signifi-
cantly increased in FGR-affected placenta [31], while its 
function in preeclampsia remained to be investigated. 
Previous study has reported that HIF-1 Beta, encoded 
by ARNT, is associated with placental morphogenesis, 
angiogenesis, and cell differentiation [32]. FLT1 encodes 
Fms-related tyrosine kinase 1 (FLT1 or VEGFR1), which 
is related to reactive oxygen species, and sFlt1, the solu-
ble form of FLT1, is widely used for diagnosis and man-
agement in preeclampsia with placental growth factor 
(PIGF) [4]. SERPINE1 encodes PAI1, which is reported 
to be an inhibitor of trophoblast migration and inva-
sion [33]. B cell lymphoma 2 (Bcl2) is an antiapoptotic 
marker which is found lower in preeclampsia placenta 
than health placenta, while the role BCL2 in preeclamp-
sia needs further research [34]. However, the contribu-
tion of ENO3 and LDHA to preeclampsia is still unclear. 
Based on these seven genes, we constructed a diagnos-
tic model with AUC 0.923 and 0.845 in training dataset 

and validation dataset, respectively, which means a good 
performance in distinguishing preeclampsia and healthy 
pregnancy, and these genes might be potential biomark-
ers associated with the occurrence and development of 
preeclampsia. In addition, More attention should be paid 
to the role of these genes in the physiopathology of pre-
eclampsia. However, because our analysis is based on 
public databases, further experimental studies are needed 
to validate the seven genes of the result of this study.

Conclusion
In summary, our study identified MKNK1, ARNT, FLT1, 
SERPINE1, ENO3, LDHA, BCL2 out of HIF1-signaling 
pathway as novel diagnostic biomarkers for preeclampsia 
patients, and a diagnostic signature based on these genes 
is constructed for preeclampsia.
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