
Zhai et al. BMC Pregnancy and Childbirth           (2023) 23:14  
https://doi.org/10.1186/s12884-023-05346-6

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Pregnancy and Childbirth

Nontargeted metabolomics reveals 
the potential mechanism underlying 
the association between birthweight 
and metabolic disturbances
Xiao Zhai1†, Jieying Liu1,2†, Miao Yu1, Qian Zhang1, Ming Li1, Nan Zhao2, Juntao Liu3, Yingna Song3, 
Liangkun Ma3, Rongrong Li4, Zongxu Qiao5, Guifen Zhao5, Ruiping Wang5 and Xinhua Xiao1* 

Abstract 

Aims  The aim of this study was to characterize the metabolites associated with small- and large-gestational-age 
newborns in maternal and cord blood, and to investigate potential mechanisms underlying the association between 
birthweight and metabolic disturbances.

Research design and methods  We recorded detailed anthropometric data of mother-offspring dyads. Untargeted 
metabolomic assays were performed on 67 pairs of cord blood and maternal fasting plasma samples including 16 
pairs of small-for-gestational (SGA, < 10th percentile) dyads, 28 pairs of appropriate-for-gestational (AGA, approximate 
50 percentile) dyads, and 23 pairs of large-for-gestational (LGA, > 90th percentile) dyads. The association of metabo-
lites with newborn birthweight was conducted to screen for metabolites with U-shaped and line-shaped distribu-
tions. The association of metabolites with maternal and fetal phenotypes was also performed.

Results  We found 2 types of metabolites that changed in different patterns according to newborn birthweight. One 
type of metabolite exhibited a “U-shaped” trend of abundance fluctuation in the SGA-AGA-LGA groups. The results 
demonstrated that cuminaldehyde level was lower in the SGA and LGA groups, and its abundance in cord blood was 
negatively correlated with maternal BMI (r = -0.352 p = 0.009) and weight gain (r = -0.267 p = 0.043). 2-Methoxy-estra-
diol-17b 3-glucuronide, which showed enrichment in the SGA and LGA groups, was positively correlated with homo-
cysteine (r = 0.44, p < 0.001) and free fatty acid (r = 0.42, p < 0.001) in maternal blood. Serotonin and 13(S)-HODE were 
the second type of metabolites, denoted as “line-shaped”, which both showed increasing trends in the SGA-AGA-LGA 
groups in both maternal and cord blood and were both significantly positively correlated with maternal BMI before 
pregnancy. Moreover, cuminaldehyde, serotonin, 13(S)-HODE and some lipid metabolites showed a strong correlation 
between maternal and cord blood.

Conclusions  These investigations demonstrate broad-scale metabolomic differences associated with newborn 
birthweight in both pregnant women and their newborns. The U-shaped metabolites associated with both the 
SGA and LGA groups might explain the U-shaped association between birthweight and metabolic dysregulation. 
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The line-shaped metabolites might participate in intrauterine growth regulation. These observations might help to 
provide new insights into the insulin resistance and the risk of metabolic disturbance of SGA and LGA babies in adult-
hood and might identify potential new markers for adverse newborn outcomes in pregnant women.

Keywords  Metabolomics, Newborn birthweight, Metabolic disturbances

Introduction
Disturbances in fetal growth could greatly increase the 
susceptibility to chronic metabolic diseases in adulthood, 
mainly obesity, insulin resistance, impaired glucose toler-
ance, dyslipidemia, and cardiovascular diseases [1–3]. It 
has been recognized for years that small-for-gestational-
age (SGA) infants are associated with a high risk of devel-
oping metabolic dysregulations in adulthood [3–7]. In 
addition, infants born as large-for-gestational-age (LGA) 
are also at a higher risk of T2DM and obesity [8]. This 
demonstrates the U-shaped relationship between birth-
weight and the risk of T2DM [9].The hypothesis of “fetal 
origins of adult diseases” proposed by Barker et al. indi-
cates that intrauterine factors have long-term program-
ming effects on fetal development and lead to increased 
vulnerability to chronic diseases later in life, often in 
adulthood [1]. This concept was initially supported by 
studies on children with SGA [10] and maternal malnu-
trition [11] associated with increased susceptibility to 
chronic diseases later in life. Studies on prenatal fam-
ine during the Dutch Hunger Winter [12] and adults 
born during the Chinese famine between 1959 and 1961 
[13] found that individuals who were exposed to fam-
ine in utero were more prone to be overweight and have 
T2DM. The thrifty phenotype attributes the relationship 
of adverse intrauterine growth and subsequent increased 
metabolic risk to the compensatory response to undernu-
trition status in early life, leading to permanent changes 
in metabolism [1].

While the foundational studies of this “fetal origins of 
adult diseases” theory focused on the influence of pre-
natal undernutrition on offspring, an increasing body of 
studies have focused on the impact of maternal obesity 
and diabetes during pregnancy on offspring. Evidence 
has shown that maternal obesity and overnutrition are 
linked to a higher incidence of macrosomia or LGA and 
have a potential impact on future metabolic risk [2, 14, 
15]. For instance, maternal prepregnancy obesity and 
excessive gestational weight gain are associated with 
higher offspring birthweight and childhood adiposity 
[16]. Moreover, a positive association has been discov-
ered between maternal diabetes or third-trimester glu-
cose tolerance with higher offspring birth weight and 
youth-onset T2DM incidence [17].

However, the mechanism underlying the association 
between high or low birthweight and T2DM risk remains 

unclear. It is quite interesting that high- and low-birth-
weight infants are likely exposed to different intrauterine 
environments; yet, they both have an elevated tendency 
to develop metabolic diseases in adulthood. Therefore, 
we hypothesized that high- and low-birthweight infants 
could share similar metabolic alterations reflecting 
underlying important biomolecular mechanisms linked 
to these processes.

There is an urgent need to understand the complex 
intrauterine biomolecular perturbations and to iden-
tify individuals at risk of metabolic disturbances. Since 
the exchange of nutrients for fetal metabolism by the 
placenta is essential for fetal growth and due to the pla-
cental barrier, most substances that pass through the 
barrier are small and hydrophobic molecules, such as 
glucose, amino acids and fatty acids [18]. The analysis of 
the metabolite profile in maternal blood and fetal cord 
blood might reflect parts of the material exchange and 
depict the intrauterine environment at a glance. Conse-
quently, using rapidly developing metabolomics technol-
ogies that focus on the quantity of low molecular weight 
(< 1500 Da) metabolites offers an integrative perspective 
into this maternal–fetal metabolism status. Full-scan 
nontargeted Q-TOF coupled with liquid chromatography 
can provide excellent robustness, and hundreds of sam-
ples can be profiled [19].

In this study, we aimed to characterize the metabolic 
phenotypes of pregnant women and their newborn 
babies with high or low birth weight, identify metabolic 
perturbations linked to birth weight, and explore poten-
tial biomolecular mechanisms linked to abnormal birth 
weight.

Research design and methods
Data and sample collection
This study recruited mother–offspring dyads from the 
outpatient clinic and/or the delivery ward of the Depart-
ment of Obstetrics and Gynecology at Peking Union 
Medical College Hospital (PUMCH) and Xingtai People’s 
Hospital (XTPH) in China from September 2017 to July 
2018. The inclusion criteria were as follows: being single-
ton pregnant, maternal age between 18 and 45, and ges-
tational age (GA) between 37 and 42 weeks. Participants 
who had smoked or had alcohol use during pregnancy 
and those who had been diagnosed with hypertension 



Page 3 of 13Zhai et al. BMC Pregnancy and Childbirth           (2023) 23:14 	

or preeclampsia were excluded from this study. The 
study protocol was approved by the ethics committees of 
PUMCH and the ethics committee of XTRH, and writ-
ten informed consent was obtained from all participants 
prior to recruitment.

A total of 165 mother–offspring dyads were admit-
ted to our study. According to the birth weight of neo-
nates and the Chinese neonatal birth weight report 
[20], the birth weight of neonates are classified as SGA 
(< 10th percentile), appropriate for gestational (AGA) 
(approximately 50th percentile), and LGA (> 90th per-
centile) based on gestational age.16 pairs of SGA dyads, 
28 pairs of AGA dyads, and 23 pairs of LGA dyads were 
selected for this study. Participating mothers underwent 
a 75-g oral glucose tolerance test (OGTT) between 24 
and 28  weeks of gestation. Maternal anthropometric 
measurements, including height, weight, and mean arte-
rial pressure, were measured by doctors. Information on 
maternal age, parity, past medical history, prepregnancy 
weight, and gestational weight gain were collected from 
their pregnancy health records. Prepregnancy body mass 
index (BMI) was calculated as prepregnancy weight in 
kilograms divided by measured height in meters squared 
(kg/m2). Birth weight, newborn sex, mode of delivery, 
and gestational age were obtained from the hospital 
delivery records.

Maternal blood samples were collected in a fasting 
state between 37 and 42  weeks gestational age during 
routine blood sampling from the outpatient clinic. Cord 
vein blood samples were obtained within 10 min of deliv-
ery. The blood samples were collected into 2-ml EDTA 
containers and placed on ice. The blood was immediately 
centrifuged (3000 rpm, 15 min) at 4 °C, plasma was sepa-
rated, and aliquots (0.2 ml) were rapidly stored at -80 °C 
until metabolomic assays.

Conventional metabolite analysis
Conventional metabolites were measured on a Beck-
man Coulter AU5800. Hypersensitive C-reactive protein 
(hs-CRP), C-peptide (C-Pep) and insulin were measured 
using reagents from Beckman (Brea, CA). Glucose, tri-
glycerides (TGs), total cholesterol (TC), high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein 
cholesterol (LDL-C), lipoprotein(a) (Lp(a)) and free fatty 
acids (FFAs) were measured using reagents from Sekisui 
(Tokyo, JPN). Additionally, homocysteine (HCY) was 
measured using reagents from Leadman (Beijing, CHN), 
and glycated albumin (GA) was measured using reagents 
from Asahi (Tokyo, JPN). Leptin and adiponectin were 
analyzed by an enzyme-linked immunosorbent assay 
(Crystal Chemistry, IL, USA).

Nontargeted metabolomics assays
The nontargeted metabolomics assays were conducted as 
previously reported [19]. Specifically, a system coupling 
ultraperformance liquid chromatography (UPLC, Waters 
ACQUITY UPLC I-Class) to time-of-flight (TOF, Waters 
XevoG2-XS Qtof) mass spectrometry was used to analyze 
the full range of metabolites present in plasma. Metha-
nol at a ratio of 3:1 (vol/vol) to the sample was added for 
protein removal overnight at -20  °C. The samples were 
centrifuged, and the supernatants were analyzed directly. 
Quality control (QC) pools were constructed using equal 
volumes from all the samples, prepared for analysis as 
described above, and injected every 10 samples for all the 
runs. The mass spectrometers (MSs) adopted both posi-
tive and negative ionization modes, which helped detect 
more compounds. Progenesis QI software (Waters) per-
forms peak picking and drift alignment (retention time 
and accurate mass) based on QC samples [17]. The anno-
tation of metabolites was in Progenesis QI, the spectra are 
matched against reference spectra in HMDB (http://​www.​
hmdb.​ca/), METLIN and KEGG databases [21].

Statistical analyses
Conventional metabolites and group comparisons
All statistical analyses were performed in SPSS version 
25.0 (SPSS, Chicago, IL). Means and SDs of conventional 
metabolites were calculated. Categorical variable fre-
quencies and continuous variable means were compared 
between 3 groups using Fisher’s exact tests and one-way 
ANOVA, respectively.

Nontargeted metabolomic analysis
As previously reported [22], multivariate analysis was 
conducted using partial least squares regression discri-
minant analysis (PLS-DA) in SGA/AGA/LGA group 
comparisons in SIMCA version 14.1 (MKS Umetrics AB, 
Umea, Sweden). Orthogonal partial least squares regres-
sion discriminant analysis (OPLS-DA) was used in SGA/
AGA and AGA/LGA maternal and fetal comparisons. 
Three parameters, including R2 and Q2, were used to 
evaluate the quality and reliability of these models. Indi-
vidual metabolites were selected based on the variable 
importance in projection (VIP), and metabolites in which 
VIP > 1 were selected and processed for the following 
meta-analysis.

The peak intensity data, which represent the metabo-
lite abundance in each sample, were normalized using Z 
score transformation for meta-analysis. We first identi-
fied the overlapping metabolites between the maternal 
and fetal groups in a Venn diagram using the R pack-
age VennDiagram and selected the metabolites with 

http://www.hmdb.ca/
http://www.hmdb.ca/
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the same change direction presented in the heatmap 
using the R package ComplexHeatmap. In this study, 2 
types of metabolites were separately analyzed, including 
U-shaped (higher or lower in both the SGA/LGA group) 
and line-shaped (the abundance in the SGA/AGA/LGA 
group trend according to the birthweight of offspring). 
MetaboAnalyst 5.0 (https://​www.​metab​oanal​yst.​ca/) was 
used for metabolomic pathway analysis [23].

Statistical‑analysis
Continuous variables were described as the means with 
SD. Categorical variables are represented as frequencies 
with proportions. The correlation of the maternal and 
fetal metabolome was calculated and drawn using the 

Spearman method by the R package “ggplot2”. Spearman’s 
correlation analysis was used to assay the correlation 
between metabolites and clinical parameters, as for model 
1. For model 2, Partial correlation coefficients were cal-
culated to evaluate the association between metabolites 
and clinical parameters after adjusting for confounders. r 
coefficient was calculated after adjusting for maternal age, 
parity and gestational age, and fetal sex. A P value < 0.05 
(two-sided) was considered statistically significant.

Results
Population characteristics
The following 67 pairs of mother–offspring dyads were 
included in this study: 16 pairs of SGA (< 10th percentile) 

Table 1  Demographics of mothers and their offspring

Data are n (%) or means?±?SD unless otherwise indicated. Categorical variable frequencies and continuous variable means were compared for SGA/AGA/LGA 
mothers using Fisher’s exact tests and one-way ANOVA, respectively

Characteristic SGA AGA​ LGA P

N 16 28 23

Field center, N (%)
 PUMCH, Beijing 6 (37.5) 11 (39.3) 7 (30.4) 0.81

 XTPH, Hebei 10 (62.5) 17 (60.7) 16 (69.6)

Maternal parity, N (%)
 First child 11 (68.8) 8 (28.6) 14 (60.9) 0.02
 Subsequent child 5 (31.2) 20 (71.4) 9 (39.1)

New born sex, N (%)
 Male 12 (75.0) 15 (53.6) 14 (60.9) 0.41

 Female 4 (25.0) 13 (46.4) 9 (39.1)

Mode of delivery, N (%)
 Vaginal 7 (43.8) 10 (35.7) 3 (13.0) 0.08

 Cesarean section 9 (56.2) 18 (64.3) 20 (87.0)

Maternal Characteristics, Mean (SD)
 Maternal age (years) 31.4 (4.6) 33.7 (6.7) 30.9 (5.3) 0.20

 Gestational age (weeks) 38.7 (1.1) 38.4 (0.9) 39.0 (1.1) 0.13

 Prepregnancy BMI (kg/m2) 22.4 (3.4) 23.4 (3.5) 25.1 (2.6) 0.03
 Gestational weight gain(kg) 14.8 (5.2) 14.2 (6.0) 15.5 (5.8) 0.74

 Mean arterial pressure(mmHg) 89.5 (10.2) 89.2 (9.2) 89.6 (9.7) 0.94

 Maternal GDM, N (%) 8 (50.0) 18 (64.3) 13 (56.5) 0.67

 Fasting plasma glucose(mmol/L) 4.6 (0.7) 4.7 (0.6) 4.6 (0.5) 0.78

 Fasting C-peptide (ng/mL) 2.7 (2.3) 2.2 (0.6) 2.3 (0.7) 0.37

 Fasting Insulin (µIU/mL) 10.7 (6.8) 11.8 (3.8) 13.7 (5.6) 0.27

 Leptin (ng/mL) 644.9 (494.1) 413.5 (311.1) 518.5 (391.8) 0.17

 Adiponectin (ng/mL) 6135.8 (3230.1) 6908.0 (5258.9) 6641.8 (393.2) 0.88

Newborn Characteristics, Mean (SD)
 Birthweight(g) 2739.4 (250.7) 3300.4 (133.2) 4097.0 (238.2)  < 0.001
 Cord glucose(mmol/L) 4.4 (1.3) 4.5 (1.6) 4.4 (2.1) 0.98

 Cord C-peptide (ng/mL) 0.6 (0.2) 1.1 (1.3) 1.4 (0.9) 0.08

 Cord Insulin (µIU/mL) 4.2 (2.2) 6.9 (3.9) 14.9 (21.1) 0.04
 Cord Leptin (ng/mL) 43.7 (42.8) 118.7 (203.5) 355.6 (531.5) 0.02
 Cord Adiponectin (ng/mL) 26,221.2 (8062.6) 27,014.2(10,613.8) 28,995.6 (9760.0) 0.72

https://www.metaboanalyst.ca/
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dyads, 28 pairs of AGA dyads (approximately 50th per-
centile), and 23 pairs of LGA (> 90th percentile) (Table 1). 
Most of the clinical characteristics were similar among 
the 3 groups. Maternal age, gestational age, maternal 
GDM proportion and most clinical biochemical indices, 
including fasting plasma glucose, insulin, FFA, TC, TG, 
leptin and adiponectin, showed no significant difference 
between SGA, AGA and LGA mothers. The prepreg-
nancy BMIs were 22.4, 23.4 and 25.1 in the SGA, AGA 
and LGA groups, respectively (p = 0.03). Moreover, 
HDL-C in LGA mothers (Supplemental Table S1) was 
significantly lower than that in the other two groups 
(p = 0.01). Regarding newborn characteristics, cord blood 
insulin (p = 0.04) and leptin (p = 0.02) were significantly 
higher in the LGA group.

Metabolomic analysis
Supervised PLS-DA analysis was performed to inves-
tigate the metabolite profiles of each group, obtain-
ing improved and better discrimination (Fig.  1). The 
metabolites that contributed to the separation of the 
SGA and AGA groups in the mother and their offspring 
were selected by the VIP value (> 1) calculated from the 
OPLS-DA model (Figure S1 and S2, Table S4), as well as 
those metabolites for the LGA and AGA comparison. R2 
and Q2 values for SGA vs AGA maternal metabolome 
are 0.857 and -0.569 (Negative mass mode), 0.943 and 
-0.119(Positive mass mode). R2 and Q2 values for SGA 
vs AGA fetal metabolome are 0.958 and 0.0121 (Neg), 
0.921 and -0.57(Pos). R2 and Q2 values for LGA vs AGA 

maternal metabolome are 0.955 and 0.155 (Neg), 0.959 
and -0.104(Pos). R2 and Q2 values for LGA vs AGA 
fetal metabolome are 0.944 and 0.0407 (Neg), 0.887 and 
-0.361(Pos).

From the Venn diagram (Fig. 2), we identified 1518 and 
1456 metabolites that contributed to the separation of 
LGA versus AGA mothers and their offspring (differential 
metabolites, DMs), respectively, and mothers and their 
offspring shared 827 DMs. Meanwhile, there were 1371 
and 1383 metabolites that attribute to the separation of 
SGA versus AGA mother and offspring, respectively, and 
mothers and their offspring share 663 DMs. Overlapping 
of these 4 kinds of DMs yielded 257 metabolites that rep-
resent the same DMs shared by both the SGA and LGA 
groups when compared with the AGA group.

Among these 257 metabolites (MS details are shown 
in Supplementary Table S4), we identified 2 types of 
metabolites from the heatmap (Fig.  3A), including 33 
“line-shaped” metabolites (Fig.  3B) and 44 “U-shaped” 
metabolites (Fig.  3C). The fold change between SGA 
and AGA, or LGA and AGA was calculated (Table S4), 
and the U-shaped metabolites were higher or lower in 
both SGA/LGA mothers and babies (means fold change 
of SGA/AGA and LGA/AGA are both > 1 or < 1), while 
line-shaped metabolites were increased or decreased 
among SGA/AGA/LGA mothers and babies (means 
fold change of SGA/AGA > 1 and LGA/AGA < 1, or fold 
change of SGA/AGA < 1 and LGA/AGA > 1)..

We put 33 line-shaped and 44 U-shaped metabolites 
into pathway analysis, respectively. The topological 

Fig. 1  PLS-DA score plot for maternal and fetal metabolome under negative and positive MS mode
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impact factors and enrichment analysis p-values of 
the corresponding pathways are shown in the bubble 
graph (Fig. S1). The results suggested that U-shaped 
metabolites were enriched in linoleic acid metabo-
lism (metabolites including Phosphatidylcholine-PC), 
arachidonic acid metabolism (metabolites includ-
ing PC, Prostaglandin E2), and glycerophospholipid 
metabolism (metabolites including PC, Citicoline) 

(Fig. S3A). Line-shaped metabolites were enriched in 
glycerophospholipid metabolism (metabolites includ-
ing phosphatidylethanolamine-PE, PC, 1-Acyl-sn-
glycero-3-phosphocholine-LysoPC), alpha-linolenic 
acid metabolism (metabolites including PC, tetracosa-
noic acid, 13(S)-HODE), and linoleic acid metabolism 
(metabolites including PC) (Fig. S3B).

Metabolites associated with newborn birthweight
As shown in Fig. 4A, the U-shaped metabolites were more 
highly expressed in both SGA and LGA maternal and cord 
blood, including L-carnitine, PG(16:1/ 22:6) (denoted PG) 
and 2-methoxy-estradiol-17b 3-glucuronide (denoted 
glucuronide). However, cuminaldehyde was significantly 
downregulated in the SGA and LGA groups.

As shown in Fig.  4B, line-shaped metabolites, includ-
ing serotonin, 13S-hydroxyoctadecadienoic acid (denoted 
as 13(S)-HODE) and MG(0:0/24:6/0:0) (denoted 
as MG), showed increasing trends in both mothers 
and babies among the SGA, AGA and LGA groups. 
LysoPC(p-18:1/0:0) (denoted as LysoPC) showed decreas-
ing trends in both mothers and babies among the SGA, 
AGA and LGA groups.

Fig. 2  Venn diagram showing the identified metabolites selected by 
the OPLS-DA models

Fig. 3  Heatmap showing normalized metabolite abundance in different groups. A The 257 metabolites shared by the SGA and LGA groups 
and different from the AGA group.; B The 33 line-shaped metabolites display the increasing/decreasing abundance in the SGA/AGA/LGA group 
according to the newborn birthweight. C The 44 U-shaped metabolites display higher or lower abundance in both the SGA and LGA groups
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Correlation between maternal and fetal metabolite 
abundance
The correlation between the maternal and fetal metabo-
lome was analyzed using the Spearman method (Fig. 5). 
Among U-shaped metabolites, L-carnitine (r = 0.72, 
p < 0.001), cuminaldehyde (r = 0.38, p = 0.004) and PG 
(r = 0.31, p = 0.02) in maternal and cord blood were 
significantly positively correlated. Among line-shaped 
metabolites, serotonin (r = 0.32, p < 0.001), 13(S)-HODE 
(r = 0.54, p < 0.001), LysoPC (r = 0.42, p = 0.001), and 
monoacylglyceride (r = 0.42, p = 0.001) in maternal and 
cord blood were significantly positively correlated.

Correlation between metabolite levels and clinical 
characteristics
To further investigate the association between the metabo-
lome and clinical characteristics, partial correlation analysis 
was performed (Table 2 and Table 3). Among the U-shaped 
metabolites, cuminaldehyde was expressed at low levels in 
the SGA and LGA groups, and its abundance in maternal 
blood was positively correlated with maternal adiponec-
tin (r = 0.320 p = 0.010) and HDL-C (adjusted r = 0.323 
p = 0.011). Cuminaldehyde in cord blood was negatively 
correlated with maternal prepregnancy BMI (adjusted 
r = -0.356 p = 0.009) and weight gain (r = -0.267 p = 0.043), 
as shown in Table S2. L-Carnitine, PG and glucuron-
ide were higher in the SGA and LGA groups. Maternal 

glucuronide was positively correlated with maternal HCY 
(adjusted r = 0.396, p = 0.002) and FFA (adjusted r = 0.479, 
p < 0.001). Maternal glucuronide was negatively corre-
lated with FBG (adjusted r = -0.360, p = 0.005) and HDL-C 
(adjusted r = -0.247, p = 0.058). Maternal PG was positively 
correlated with prepregnancy BMI (adjusted r = 0.328 
p = 0.011). Cord blood PG was positively correlated with 
FFA (adjusted r = 0.285 p = 0.045).

Among the line-shaped metabolites, serotonin, 13(S)-
HODE and MG showed increasing trends in the SGA, 
AGA and LGA groups. The abundance of serotonin in 
maternal blood was significantly positively correlated with 
prepregnancy BMI (r = 0.259, p = 0.037) and maternal 
HCY (r = 0.361, p = 0.003). Cord blood serotonin levels 
were also significantly positively correlated with prepreg-
nancy BMI (adjusted r = 0.354, p = 0.009) and cord blood 
glucose (r = -0.355, p = 0.008). Maternal 13(S)-HODE 
was positively correlated with maternal prepregnancy 
BMI (adjusted r = 0.441, p < 0.001), weight gain (adjusted 
r = 0.400, p = 0.002), and maternal HCY (r = 0.258, 
p = 0.038) and negatively correlated with maternal adi-
ponectin (r = -0.28, p = 0.023). Moreover, maternal MG 
was positively related to maternal FFA (adjusted r = 0.315, 
p = 0.014). Maternal LysoPC showed decreasing trends in 
the SGA, AGA and LGA groups that were positively related 
to maternal HDL-C (r = 0.286, p = 0.021), as well as LysoPC 
in cord blood with cord HDL-C (r = 0.263, p = 0.050).

Fig. 4  Abundance of metabolites in different groups. A Representative U-shapes metabolites; B Representative line-shaped metabolites; 
Abundance was normalized using Z score transformation of intensity
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Fig. 5  Association of metabolites in maternal and cord blood. A Representative U-shaped metabolites; B Representative line-shaped metabolites

Table 2  Correlation of U-shaped metabolites and blood index in maternal blood

Model 1 is non-adjusted

Model 2 is adjusted for maternal age, parity, GDM and gestational age, and fetal sex

L-Carnitine Cuminaldehyde 2-methoxy-estradiol-17b 
3-glucuronide

r P r P r P r P

BMI Model1 -0.005 0.971 -0.179 0.154 0.177 0.158 0.280 0.024
Model2 0.017 0.899 -0.180 0.169 0.110 0.403 0.328 0.011

Weight Gain Model1 -0.140 0.267 -0.252 0.043 0.146 0.245 0.224 0.073

Model2 -0.200 0.125 -0.240 0.065 0.071 0.591 -0.099 0.452

HbA1c Model1 -0.099 0.496 -0.226 0.115 0.101 0.486 -0.164 0.255

Model2 -0.149 0.329 -0.153 0.316 -0.091 0.554 -0.075 0.625

FBG Model1 0.200 0.113 0.030 0.815 -0.424  < 0.001 -0.009 0.943

Model2 0.205 0.119 0.036 0.788 -0.360 0.005 0.126 0.341

HDL-C Model1 -0.064 0.610 0.242 0.052 -0.254 0.041 -0.110 0.384

Model2 -0.026 0.845 0.329 0.010 -0.247 0.058 -0.124 0.347

LDL-C Model1 0.052 0.681 0.067 0.599 -0.070 0.581 -0.204 0.103

Model2 0.021 0.872 0.081 0.536 -0.116 0.378 -0.276 0.033
FFA Model1 0.046 0.714 -0.150 0.234 0.424  < 0.001 -0.196 0.118

Model2 0.080 0.544 -0.140 0.287 0.479  < 0.001 0.044 0.740

Leptin Model1 0.098 0.440 -0.131 0.303 -0.165 0.192 0.285 0.022
Model2 -0.023 0.861 -0.222 0.091 -0.254 0.052 0.051 0.702

Adiponectin Model1 0.033 0.795 0.320 0.010 -0.185 0.143 -0.052 0.682

Model2 0.076 0.567 0.064 0.628 0.006 0.962 0.052 0.696

HCY Model1 -0.242 0.052 -0.316 0.010 0.440  < 0.001 -0.150 0.234

Model2 -0.226 0.082 -0.102 0.438 0.396 0.002 -0.084 0.523
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Discussion
Previous studies in the HAPO and other cohorts have dem-
onstrated the effect of maternal obesity and gestational dia-
betes mellitus (GDM) on newborn size using metabolomic 
technology, suggesting that the intrauterine environment 
provided by mothers could affect newborn outcomes [24–
26]. Our study group discovered that lower birth weight 
is an independent risk factor for later diabetes or IGT and 
showed for the first time that this risk factor also applies 
to a Chinese population [4], and both intrauterine under- 
and overnutritional status could affect insulin resistance in 
adulthood in animal experiments [27, 28], which was con-
sistent with the developmental origins of health and disease 
(DoHAD) hypothesis. In this study, we aim to provide a 
new perspective from the view of newborns to discover the 
association of the metabolome between SGA, AGA, and 
LGA newborn babies and their mothers.

In this study, using an untargeted metabolomics 
approach, we show for the first time that specific metabo-
lites were associated with both SGA and LGA mothers 
and their offspring, which might explain the phenomenon 
that children born with SGA and LGA had similar adverse 
outcomes. We observed that U-shaped metabolites were 
enriched in linoleic acid, arachidonic acid and glycerophos-
pholipid metabolism. The metabolites associated with the 

top 3 pathways were PC, citicoline and Prostaglandin E2. 
The importance of PC regulating lipid, lipoprotein and 
whole-body energy metabolism has been demonstrated 
in numerous dietary studies and knockout animal models 
[29]. For example, PC is an essential component of the very 
low-density lipoprotein (VLDL) complex [29], and the inhi-
bition of hepatic PC synthesis impairs VLDL secretion and 
is linked to fatty liver disease in rodents as well as in human 
[30–32]. Related compounds of PC metabolic pathway, 
PC(14:0/22:5), PC(22:4/P-18:0), PG(16:1), and citicoline 
showed decreasing or increasing trends in both SGA/LGA 
maternal and fetal blood, which may indicate a disturbance 
of PC metabolism in these mother–offspring pairs.

In addition to pathway analysis, we screened 44 metab-
olites by p value, and identified that cuminaldehyde is 
lower in the SGA and LGA groups and is reported to 
be a volatile chemical constituent of cumin seed [33]. It 
has been reported that cuminaldehyde presents in trace 
amounts in the blood and milk of ewes fed with cumin 
seed [34], and its molecular weight is 148.205  Da, indi-
cating that cuminaldehyde should be easily transported 
across the placental barrier. Cuminaldehyde was reported 
to have an inhibitory effect in vitro against rat lens aldose 
reductase and alpha-glucosidase (human metabolome 
database) and to protect against nonalcoholic fatty 

Table 3  Correlation of line-shaped metabolites and blood index in maternal blood

Model 1 is non-adjusted

Model 2 is adjusted for maternal age, parity, GDM and gestational age, and fetal sex

Serotonin 13(S)-HODE LysoPC(P-18:1) MG(0:0/24:6)

r P r P r P r P

BMI Model1 0.259 0.037 0.462  < 0.001 -0.077 0.544 0.024 0.848

Model2 0.193 0.140 0.441  < 0.001 -0.073 0.580 0.115 0.380

Weight Gain Model1 0.191 0.128 0.404 0.001 -0.135 0.283 -0.120 0.341

Model2 0.230 0.076 0.400 0.002 -0.133 0.312 -0.155 0.238

HbA1c Model1 0.212 0.139 0.125 0.388 0.047 0.748 -0.055 0.705

Model2 0.107 0.483 0.259 0.086 0.060 0.693 -0.084 0.583

FBG Model1 -0.227 0.071 -0.157 0.216 0.248 0.048 0.073 0.567

Model2 -0.188 0.155 -0.129 0.328 0.186 0.159 0.033 0.805

HDL-C Model1 -0.190 0.129 -0.139 0.268 0.286 0.021 -0.073 0.563

Model2 -0.236 0.069 -0.152 0.247 0.192 0.142 -0.145 0.270

LDL-C Model1 -0.076 0.545 -0.152 0.228 0.166 0.185 0.118 0.350

Model2 0.016 0.906 -0.041 0.758 0.216 0.098 0.044 0.741

FFA Model1 0.312 0.011 0.069 0.583 -0.111 0.380 0.313 0.011
Model2 0.303 0.019 0.052 0.695 -0.150 0.251 0.315 0.014

Leptin Model1 -0.010 0.937 0.170 0.181 -0.084 0.511 -0.182 0.151

Model2 -0.045 0.735 0.092 0.487 -0.013 0.920 -0.180 0.172

Adiponectin Model1 -0.126 0.321 -0.284 0.023 0.097 0.445 -0.048 0.706

Model2 0.000 0.997 -0.079 0.552 0.174 0.187 -0.018 0.893

HCY Model1 0.361 0.003 0.258 0.038 -0.118 0.350 -0.032 0.800

Model2 0.244 0.061 0.111 0.397 -0.211 0.106 -0.075 0.571
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liver disease in rats fed a high-fat diet [35]. This inhibi-
tory action of cuminaldehyde suggests its potential util-
ity as an antidiabetic therapeutic [36], and the potential 
mechanism might be associated with its insulinotropic 
and ß-cell protective action [37]. In our study, cuminal-
dehyde was also significantly positively correlated with 
maternal adiponectin levels, negatively correlated with 
maternal BMI before pregnancy, and weight gain dur-
ing pregnancy. These data indicate that cuminaldehyde 
is involved in lipid metabolism. According to previous 
reports, cuminaldehyde shows its superior activity for 
lipoxygenase (LOX) inhibitor, thereby blocking the oxi-
dation of unsaturated fatty acids and inhibiting reactive 
oxygen species (ROS) production [33]. It is also quite 
interesting that adiponectin also showed a reverse effect 
against LOX-1 for reducing ROS production [38]. There-
fore, due its anti-diabetic, anti-hepatotoxic and lipid 
metabolism modulating abilities, the low abundance of 
cuminaldehyde in both SGA/LGA maternal and neonatal 
blood might contribute to their increased metabolic risk.

2-Methoxy-estradiol-17b 3-glucuronide was generated 
when UDP-glucuronate was transferred to UDP and was 
enriched in the SGA and LGA groups. Glucose is phos-
phorylated to glucose 6-phosphate in hepatocytes, which 
then produces UDP-glucose. UDP-glucose can be used to 
synthesize glycogen, UDP-glucuronate and UDP-galactose 
[39]. Even though the glucose in maternal and fetal blood 
showed no difference in the SGA, AGA and LGA groups 
in our study, the increased level of 2-methoxy-estradiol-
17b 3-glucuronide in the SGA/LGA groups might indicate 
a higher hepatic UDP-glucuronate transition rate in SGA 
and LGA newborns and their mothers. Recent research 
has also found that glucuronidation of bilirubin, drugs 
and xenobiotics in hepatocytes by glucuronide is consid-
ered a detoxification process [40]. Thus, the alteration in 
glucuronides concentrations might lead to impairment of 
the detoxification biological processes. Consistent with 
our hypothesis, abnormal glucuronide concentrations 
predict gestational diabetes in early pregnancy [41]. We 
also observed that the glucuronide was positively related 
with FFA in maternal blood, and negatively related with 
adiponectin in cord blood. Fatty acids have been reported 
to inhibit glucuronidation of different substrates [42, 43], 
which might explain the link of glucuronide to lipid index. 
These initial results are suggestive of a link between the 
abnormal abundance of certain metabolites in the intrau-
terine environment and the higher metabolic disorder 
development rate of both SGA and LGA newborns.

From the pathway analysis of line-shaped metabo-
lites, we found out that top 3 pathways are all related 
to a series of phospholipids and fatty acids metabolites, 
including PC, PE, LysoPC and fatty acids. Since line-
shaped metabolites are positively or negatively correlated 

to newborn birthweight, we suppose that it might closely 
related to lipogenesis. The PC and PE are well studied for 
the role in lipid droplet formation [44, 45] and de novo 
lipogenesis regulation [46]. Therefore, it is plausible that 
the line-shaped metabolites are enriched in phospholipid 
metabolism pathways.

We also discover that serotonin, which was produced 
within the central nervous system and is in charge of 
regulating behavior, suppressing appetite and promot-
ing energy expenditure, showed increasing trends [47]. 
Moreover, serotonin and insulin are colocalized in secre-
tory beta-granules and are cosecreted by the stimulation 
of glucose [48]. Serotonin in adipose tissue promotes 
adipogenesis in white adipocytes, and elevated serotonin 
levels are associated with obesity. In our study, serotonin 
in maternal and fetal blood was also positively related to 
maternal BMI before pregnancy and the conventional 
biochemical index FFA, which indicated that the birth-
weight of newborns was possibly associated with mater-
nal energy homeostasis.

13S-hydroxyoctadecadienoic acid, known as 13(S)-
HODE, is the major lipoxygenation product synthesized 
in the body from linoleic acid and has been proposed as a 
biomarker for evaluating oxidative stress [49]. 13(S)-HODE 
has been reported to be increased in T2DM and alcohol-
induced liver injury mouse models [50]. In our study, the 
level of 13(S)-HODE in maternal and cord blood showed 
increasing trends in the SGA, AGA and LGA groups 
and was significantly positively correlated with maternal 
prepregnancy BMI, weight gain, and HCY. Hyperhomo-
cysteinemia is an independent risk factor for cardiovascular 
diseases and can also activate oxidative stress in endothe-
lial cells [51]. Our results suggest that this oxidative stress 
marker, 13(S)-HODE, is positively correlated with neonatal 
birthweight, and related to maternal weight issues.

An additional interest in our study was the asso-
ciation of the maternal and fetal metabolome, which 
might explain the molecular mechanism underlying the 
DoHAD hypothesis of how the intrauterine environment 
regulates fetal metabolism. From the HAPO study [24], 
we can also tell that amino acids and acylcarnitine dem-
onstrated significant correlations between maternal and 
cord blood levels via a series of transporters. Our analy-
ses demonstrated that most of the metabolites in mater-
nal blood showed a significant correlation with those in 
cord blood, including small molecule metabolites, such 
as the small polar molecules cuminaldehyde and sero-
tonin, lipophilic molecule PG and 13(S)-HODE. Since 
most exchange across the placenta is driven by diffusion 
or specific transport proteins, small polar molecules and 
lipophilic substances dissolve readily through the entire 
syncytiotrophoblast plasma membrane and easily enter 
the fetal circulation system [18]. The same alterations 
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of maternal and fetal metabolome were also found in 
the preeclampsia pregnant groups, probably due to the 
metabolites passive transfer of metabolites across the 
placenta [52]. It has been reported that compounds, such 
as reactive oxygen species, which could reflect mater-
nal metabolic status, may cross the placenta and affect 
the growing fetus in a similar fashion [53]. Therefore, 
some of the metabolites in cord blood are derived from 
transplacental transfer and are significantly influenced 
by maternal blood metabolite levels. Moreover, diffused 
metabolites could have a role in regulating fetal metab-
olism, which warrants further investigation. Despite 
differences in metabolomics, recent studies show that 
umbilical artery parameter is also correlated with new-
born birthweight [54], especially in gestational diabetic 
mothers [55]. Therefore, we suppose that both maternal 
blood metabolites and umbilical artery hemodynamic 
factors influence birth weight.

This study had several strengths. An untargeted metab-
olomic assay was conducted to profile the whole pic-
ture of metabolites in both peripheral blood of pregnant 
women and cord blood of their babies, which could more 
extensively focus on molecular transfer in the intrauter-
ine environment. We show for the first time that specific 
metabolites were associated with both SGA and LGA 
mothers and their offspring, which might explain why 
the children born with SGA and LGA had similar adverse 
outcomes. To further explore the clinical relevance of 
these metabolites, the correlation of maternal and fetal 
metabolomes with their phenotype was analyzed, and we 
found that maternal BMI, weight gain and adipokines, 
instead of blood glucose indices, were significantly asso-
ciated with metabolite levels. The association of the 
maternal and fetal metabolome was also analyzed, and 
fetal metabolites in cord blood were significantly related 
to maternal blood metabolite levels. One limitation is 
that the confidence of metabolites annotation via non-
targeted assays is limited, therefore the accurate quanti-
fication of our discovered metabolites need to be further 
confirmed by targeted assays and using standards for 
exact identification and quantitation. Another limitation 
is that the sample size of this study is relatively small. A 
larger cohort study with dietary records and animal mod-
els are planned to test these hypotheses.

In conclusion, we demonstrated a broad-scale associa-
tion of metabolites between pregnant women and their 
offspring. We found 2 types of metabolites that changed 
with different patterns according to newborn birth-
weight. Among these metabolites, cuminaldehyde and 
glucuronide, denoted as “U-shaped” metabolites, asso-
ciated with both the SGA and LGA groups have been 
reported to participate in glucose regulation, which 
might explain the phenomenon where these children 

had similar adverse outcomes in adulthood. Serotonin 
and 13(S)-HODE are denoted as “line-shaped” metab-
olites, which correlate positively with newborn 
birthweight and are involved in energy homeostasis reg-
ulation and oxidative stress. These investigations dem-
onstrate broad-scale metabolic differences related to 
newborn birthweight that help to provide new insights 
into insulin resistance and risks of metabolic syndrome 
in adults with SGA and LGA babies and might identify 
potential new markers for adverse newborn outcomes in 
pregnant women.
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