RESEARCH

The prevalence of mental ill-health in women during pregnancy and after childbirth during the Covid-19 pandemic: a systematic review and Meta-analysis

Gayathri Delanerolle^{1,2}, Mary McCauley³, Martin Hirsch^{4,5}, Yutian Zeng⁶, Xu Cong⁶, Heitor Cavalini², Sana Sajid², Ashish Shetty^{4,7}, Shanaya Rathod², Jian Qing Shi^{6,8}, Dharani K. Hapangama⁹ and Peter Phiri^{2,10*}

Abstract

Background This systematic review aims to explore the prevalence of the impact of the COVID-19, MERS, and SARS pandemics on the mental health of pregnant women.

Methods All COVID-19, SARS and MERS studies that evaluated the mental health of pregnant women with/without gynaecological conditions that were reported in English between December 2000 – July 2021 were included. The search criteria were developed based upon the research question using PubMed, Science Direct, Ovid PsycINFO and EMBASE databases. A wide search criterion was used to ensure the inclusion of all pregnant women with existing gynaecological conditions. The Newcastle-Ottawa-Scale was used to assess the risk of bias for all included studies. Random effects model with restricted maximum-likelihood estimation method was applied for the meta-analysis and I-square statistic was used to evaluate heterogeneity across studies. The pooled prevalence rates of symptoms of anxiety, depression, PTSD, stress, and sleep disorders with 95% confidence interval (CI) were computed.

Results This systematic review identified 217 studies which included 638,889 pregnant women or women who had just given birth. There were no studies reporting the mental health impact due to MERS and SARS. Results showed that women who were pregnant or had just given birth displayed various symptoms of poor mental health including those relating to depression (24.9%), anxiety (32.8%), stress (29.44%), Post Traumatic Stress Disorder (PTSD) (27.93%), and sleep disorders (24.38%) during the COVID-19 pandemic.

Discussion It is important to note that studies included in this review used a range of outcome measures which does not allow for direct comparisons between findings. Most studies reported self-reported measure of symptoms without clinical diagnoses so conclusions can be made for symptom prevalence rather than of mental illness. The importance of managing mental health during pregnancy and after-delivery improves the quality of life and wellbeing of mothers hence developing an evidence-based approached as part of pandemic preparedness would improve mental health during challenging times.

*Correspondence: Peter Phiri peter.phiri@southernhealth.nhs.uk Full list of author information is available at the end of the article

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Other The work presented in this manuscript was not funded by any specific grants. A study protocol was developed and published in PROSPERO (CRD42021235356) to explore several key objectives.

Keywords Covid-19, Mental ill-health, Depression, Anxiety, Stress, Pregnancy, Antenatal care, Wellbeing

Background

In December 2019, SARS-CoV-2 unprecedentedly spread around the world, overwhelming global healthcare systems. On March 11, 2020, the World Health Organization declared the coronavirus disease 2019 (COVID-19) global pandemic. This led to a rippling impact of the virus on healthcare systems. In order to reduce viral transmission and relieve pressure on healthcare networks, many countries, including the United Kingdom (UK), entered a national lockdown by which people were ordered by law to stay at home [1]. In many hospitals, staff were redeployed, and departments were adapted or converted to provide COVID-19 services [1].

Whilst public health emergencies explicitly effect the physical health of a population, increased levels of poor mental health can also be discovered (e.g., depression, PTSD, substance use disorder, and behavioural disorders) [2]. Influences directly related to infection, such as, the neuroinvasive potential of SARS-CoV-2, may affect brain function and in turn mental health. The treatment for COVID-19 may also have adverse effects on mental health. For example, the imposition of unfamiliar public health measures (i.e., social isolation) increases the likelihood of clinically significant depression or anxiety [2, 3]. Whilst all individuals were urged to comply with lockdown protocols, emotional distress tempted some to consider violating the recommended public health measures [3].

One vulnerable group during the pandemic were pregnant women and women who had recently given birth. Millions of women experience mental ill-health during pregnancy and after childbirth, with maternal mental ill-health being an international public health concern, affecting up to 10% of women during pregnancy and 13% of women after childbirth [4–6]. Compromised mental health can cause short and long-term consequences for the mother and baby however limited data exists on the prevalence of mental ill-health in women who were pregnant and gave birth during the COVID-19 pandemic [6–8].

This systematic review and meta-analysis will assess the prevalence of mental ill-health in women during pregnancy and after childbirth throughout the Covid-19 pandemic. Findings with be compared to other global pandemics including SARS and MERS.

Methods

A systematic methodology was developed along with a relevant protocol that was peer reviewed and published in PROSPERO (CRD42021235356).

Search criteria

The search criteria were developed based upon the research question using PubMed, Science Direct, Ovid PsycINFO and EMBASE databases. A wide search criterion was used to ensure the inclusion of all pregnant women with existing gynaecological conditions. The MeSH terms used include (COVID) OR (SARS-CoV-2) AND (SARS) AND (MERS) AND ((mental health) OR (depression) OR (anxiety) OR (PTSD) OR (psychosis) OR (unipolar) OR (bipolar)) AND ((PCOS) OR (fibroid) OR (endometriosis) OR (pre-eclampsia) OR (still birth) OR (GDM) OR (preterm birth) OR (women's health) OR (pregnant women) OR (pregnancy)).

Screening eligibility criteria

All studies published in English were included from 20th December 2019 to 31st July 2021. Screening and data extraction were performed by two authors independently. Initially, titles and abstracts were reviewed to determine the relevance. A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) diagram was completed based on the eligibility steps completed (see Fig. 1).

Inclusion and exclusion criteria

All COVID-19, SARS and MERS studies that evaluated the mental health of pregnant women with/without gynaecological conditions that were reported in English between December 2000 – July 2021 were included. All other studies were excluded from this analysis.

Data extraction

Full texts of the included papers were reviewed to extract the following data: time and locations of the study, participants demographics, sample size, mean age, gestation, days since childbirth, prevalence of mental symptoms, data collection tools used, and cut-offs scores applied. Any disagreements were discussed and resolved by consensus between two authors. For studies with both COVID-19 and non-COVID-19 cohort, we only used

Fig. 1 PRISMA Flow Chart outlining search strategy. Legend. The above PRISMA flow chart outlines the study search strategy for both the systematic review and meta-analysis

data of the COVID-19 cohort and the *p*-value comparing them. Studies from SARS and MERS were also reviewed in full to ensure the eligibility criteria was met. Studies reporting mean (SD) or median (IQR) of the scales measuring mental symptoms instead of prevalence rates were included and a simulation method assuming normal distribution was applied to generate the corresponding prevalence rates.

Risk of bias (RoB) assessment

A risk of bias (RoB) table assessment was completed to demonstrate the risk of bias within the studies used in the systematic review and meta-analysis. The RoB is reflective of a fixed set of biases within domains of study design, conduct and reporting. This combined with the quality check allows the findings of the study to be scientifically justified, and clinically viable. The Newcastle-Ottawa-Scale (NOS) was used to assess the RoB for all systematically included studies as demonstrated within the RoB table (See Page 33, Table 1).

Data analysis

Random effects model with restricted maximum-likelihood estimation method was applied for the metaanalysis and I-square statistic was used to evaluate heterogeneity across studies. The pooled prevalence rates of symptoms of anxiety, depression, PTSD, stress, and sleep disorders with 95% confidence interval (CI) were computed. Subgroup analysis was conducted based on pregnancy trimester. Sensitivity analysis was performed to assess the robustness of the results. Potential publication bias was assessed with funnel plot and Egger's test. Analyses were conducted with the R studio (version 1.4.17.17) and STATA 16.1.

Results

Our initial search identified a total of 1603 papers and 523 studies were excluded after screening by titles and abstracts. After full-text evaluation, 217 were included in the systematic review and 99 studies were included in the meta-analysis. The PRISMA flowchart was illustrated in Fig. 1.

Table 1 Risk of Bias for all included studies

First author	Symptom(s)	Selection	Compara bility	Exposure / outcome	Total
Lebel C	Anxiety; depression	4	0	2	6
Ayaz R	Anxiety	3	0	3	6
Durankuş F	Anxiety; depression	3	0	2	5
Liu X	Anxiety	5	2	2	9
Марра I	Anxiety	4	0	2	6
López-Morales H	Anxiety; depression	3	2	2	7
Salehi L	Anxiety	3	0	2	5
Gur RE	Anxiety; depression	4	2	2	8
Ng QJ	Anxiety; depression; stress	5	0	2	7
Effati-Daryani F	Anxiety; depression; stress	4	2	2	8
Ravaldi C	Anxiety	2	0	2	4
Zhou Y	Anxiety; depression; PTSD; sleep disorders	3	2	2	7
Kahyaoglu Sut H	Anxiety; depression	3	2	2	7
Sinaci S	Anxiety	4	1	2	7
Dong H	Anxiety: depression	3	2	2	7
Hocaoglu M	Anxiety: PTSD	4	0	3	7
Yue C	Anxiety	4	1	2	7
Taubman-Ben-Ari O	Anxiety	2	0	2	4
Maharlouei N	Anxiety	2	0	2	4
Milne SI	Anxiety	1	0	1	2
Ceulemans M	Anviety: depression: stress	4	2	2	2
Vacca M	Anviety	3	0	1	4
liang H	Anviety: depression: stress	3	2	ן ר	7
Mayour A	Anviety, depression, stress	7	2	2	1
Lin W	Anviety: depression	2	2	2	7
Vang V	Anviety: depression	4	2	2	6
	Anviety: depression	4	0	2	6
Akgor U Drois H		4	2	2	7
	Anviety, stress	3	2	2	í c
Dagkiis i	Anxiety; depression	4	0	2	0
Estebali-Gonzaio S	Anxiety Application depression stress	4	2	2	0 F
	Anxiety; depression; stress	2	0	2	2
	Anxiety; depression	3	2	2	/
Cao Y	Anxiety; depression	3	0	2	5
	Anxiety	4	0	2	6
Mendizadenkasni A	Anxiety	4	0	3	/
Yirmiya K	Anxiety; depression; stress	3	2	2	/
Xie M	Anxiety; depression; sleep disorders	3	0	1	4
GeY	Anxiety	3	0	2	5
López-Morales H	Anxiety; depression	3	2	2	7
Puertas-Gonzalez JA	Anxiety; depression; stress	4	2	2	8
Çolak S	Anxiety; depression; stress	4	0	2	6
Xu K	Anxiety; depression; stress; sleep disorders	4	2	2	8
Zilver SJM	Anxiety; depression; stress	4	2	2	8
Maharlouei N	Anxiety; depression; stress	4	0	2	6
Harrison V	Anxiety; depression	4	0	2	6
Saadati N	Anxiety	4	0	2	6
Wang Q	Anxiety; depression	4	2	2	8
Behmard V	Anxiety	4	2	2	8
Hamzehgardeshi Z	Anxiety; depression	4	2	2	8
Jelly P	Anxiety	4	0	2	6

First author	Symptom(s)	Selection	Compara bility	Exposure / outcome	Total
Wang Q	Anxiety; depression	5	0	2	7
Zhang Y	Anxiety; stress	4	1	2	7
Masjoudi M	Anxiety; stress	4	1	2	7
Shangguan F	Anxiety; stress	3	2	2	7
Tsakiridis I	Anxiety; depression	4	0	2	6
Brik M	Anxiety	1	0	1	2
Effati-Daryani F	Anxiety; depression; stress	4	0	2	6
Lubián López DM	Anxiety	4	0	2	6
Maleki A	Anxiety	4	0	2	6
Khoury JE	Anxiety; depression; stress; sleep disorders	4	2	2	8
Suárez-Rico BV	Anxiety	3	0	2	5
Obata S	Anxiety; depression	3	2	2	7
Mo PKH	Anxiety; depression	4	2	2	8
Wu F	Anxiety; depression	4	2	2	8
Ding W	Anxiety	4	0	2	6
Mirzaei N	Anxiety: depression	4	0	2	6
Ramirez Biermann C	Anxiety: depression	1	0	1	2
Palalioglu RM	Anxiety	3	0	2	5
Molgora S	Anxiety: depression	4	0	2	6
Patabendige M	Anxiety: depression	4	0	1	5
Zena X	Anxiety: depression: sleep disorders	4	2	2	8
Nurrizka BH	Anviety	2	0	2	4
Wu V	Depression	2	2	2	4
Wang Y	Depression: PTSD	3	1	2	6
Medina-limenezV	Depression: stress	3	0	2	6
Matcushima M	Depression, stress	4	0	2	6
Gildoor TE	Depression	4	0	2	6
Shavganfard M	Depression Depression	4	0	2	6
Silvorman ME	Depression, stress	2	0	2	6
	Depression	2	0	2	5
	Depression	5	0	2	د ہ
Thayer Zivi	Depression	4	2	2	0
	Depression; PTSD	4	2	2	õ
Ciliarees RE	Depression	4	0	2	0
Sliverman ME	Depression	3	0	2	5
Shahid A	Depression; sieep disorders	4	0		5
	Depression	4	0	2	6
Overbeck G	Depression	3	2	2	/
Kachi Y	Depression	3	2	2	/
Smith CL	Depression; stress	2	2	2	6
King LS	Depression	2	2	1	5
Korukcu O	Depression	4	0	2	6
Zhou Y	Depression	4	2	2	8
Chaves C	Depression	4	0	2	6
Davis JA	Stress	4	2	3	9
lonio C	PTSD	4	0	2	6
Basu A	PTSD	4	2	2	8
Kara P	PTSD	4	0	2	6
Wang J	Sleep disorders	4	2	2	8

The above table outlined the risk of bias results for all studies included within this paper. Firth author and symptoms of mental health are displayed. Four outcome measures assessing risk of bias are also shown

ID	Authors	Publication Year	Country	Sample size	<i>p</i> -value
1	Wu Y [9]	2020	China	1285	0.01
2	Durankuş F [10]	2020	Turkey	260	N/A
3	Moyer CA [11]	2020	United States	2740	<i>p</i> < 0.001
4	Zanardo V [12]	2020	Italy	91	<i>p</i> < 0.001
5	López-Morales H [13]	2021	Argentina	43	N/A
6	Salehi L [14]	2020	Iran	220	N/A
7	Pariente G [15]	2020	Israel	223	0.002
8	Ostacoli L [16]	2020	Italy	163	N/A
9	Ravaldi C [17]	2021	Italy	200	<i>p</i> < 0.001
10	Zhou Y [18]	2020	China	544	N/A
11	Kahyaoglu Sut H [19]	2021	Turkey	403	N/A
12	Hui PW [20]	2021	Hong Kong (China)	925	<i>p</i> < 0.05
13	Oskovi-Kaplan ZA [21]	2021	Turkey	223	N/A
14	Sinaci S [22]	2020	Turkey	246	N/A
15	Dong H [23]	2021	China	156	N/A
16	Hocaoglu M [24]	2020	Turkey	283	p = 0.01
17	Liang P [25]	2020	China	845	, N/A
18	Preis H [26]	2020	US	4451	N/A
19	Yue C [27]	2021	China	308	N/A
20	Maharlouei N [28]	2020	Iran	540	N/A
21	Medina-limenez V [29]	2020	Mexico	503	N/A
27	Ceulemans M [30]	2020	Belaium	3445	N/A
22	Milne SI [30]	2020	Ireland	70	N/A
23	Matsushima M [31]	2020	lanan	1777	N/A
25	Ceulemans M [32]	2021	Ireland, Norway, Switzerland, the Nether- lands, and the UK	3545	N/A
26	Gildner TE [33]	2020	US	1856	N/A
27	Shayganfard M [34]	2020	Iran	103	N/A
28	Yassa M [35]	2020	Turkey	203	N/A
29	Silverman ME [36]	2020	US	516	p<0.001
30	Muhaidat N [37]	2020	Jordan	944	N/A
31	Thayer ZM [38]	2021	US	2099	N/A
32	Jiang H [39]	2021	China	1873	N/A
33	Zhang Y [40]	2021	China	560	N/A
34	Mayeur A [41]	2020	France	88	N/A
35	Lin W [42]	2021	China	751	N/A
36	Zhang CJP [43]	2020	China	1901	N/A
37	Yang X [44]	2021	Chinese	19,515	N/A
38	Khamees RE [45]	2021	Egypt	120	p<0.001
39	Lorentz MS [46]	2021	Brazil	50	p = 0.004 (comparing scores) p = 0.062 (comparing prevalence)
40	Silverman ME [47]	2020	US	485	N/A
41	Akgor U [48]	2021	Turkey	297	N/A
42	Shahid A [49]	2020	Pakistan	552	N/A
43	Preis H [50]	2020	US	788	N/A
44	Dagklis T [51]	2020	Greece	269	p<0.001
45	lonio C [52]	2021	Italy	40	N/A
46	Esteban-Gonzalo S [53]	2021	Spain	353	N/A
47	Koyucu RG [54]	2021	Turkey	729	N/A
48	Overbeck G [55]	2021	Denmark	330	0.2209

 Table 2
 Outline of all studies in the systematic review and meta-analysis

ID	Authors	Publication Year	Country	Sample size	<i>p</i> -value		
49	Kachi Y [56]	2021	Japan	270	N/A		
50	Mariño-Narvaez C [57]	2021	Spain	75	p=0.038		
51	Liu J [58]	2021	US	715	N/A		
52	Smith CL [59]	2021	USA	83	N/A		
53	Cao Y [60]	2021	China	298	N/A		
54	Mappa I [61]	2021	Italy	161	<i>p</i> < 0.0001		
55	Mehdizadehkashi A [62]	2021	Iran	300	N/A		
56	Yirmiya K [63]	2021	Israel	1114	N/A		
57	Xie M [64]	2021	China	689	p = 0.03		
58	Ge Y [65]	2021	China	446	N/A		
59	López-Morales H [66]	2021	Argentina	102	N/A		
60	Puertas-Gonzalez JA [67]	2021	Spain	100	p = 0.025		
61	Çolak S [68]	2021	Turkey	149	N/A		
62	Xu K [69]	2021	China	274	N/A		
63	Zilver SJM [70]	2021	Netherlands	1102	p = 0.14(comparing prevalence)/ $p = 0.03$ (comparing score)		
64	Maharlouei N [71]	2021	Iran	540	N/A		
65	Harrison V [72]	2021	UK	205	N/A		
66	Saadati N [73]	2021	Iran	300	N/A		
67	Wang Q [74]	2021	China	15,428	N/A		
68	Behmard V [75]	2021	Iran	801	N/A		
69	King LS [76]	2021	US	725	<i>p</i> < 0.001		
70	Nurrizka RH [77]	2021	Indonesia	120	N/A		
71	Jelly P [78]	2021	India	333	N/A		
72	Wang O [79]	2021	China	19.515	N/A		
73	Zhang Y [80]	2021	China	1794	N/A		
74	Masjoudi M [81]	2021	Iran	215	N/A		
75	Shangguan F [82]	2021	China	2120	N/A		
76	Tsakiridis I [83]	2021	Greece	505	N/A		
77	Brik M [84]	2021	Spain	164	N/A		
78	Effati-Daryani F [85]	2021	' Iran	437	N/A		
79	Boekhorst MGBM [86]	2021	Netherlands	265	N/A		
80	An R [87]	2021	China	209	N/A		
81	Lubián López DM [88]	2021	Spain	514	N/A		
82	Maleki A [89]	2021	Iran	2336	N/A		
83	Khoury JE [90]	2021	Canada	304	N/A		
84	Suárez-Rico BV [91]	2021	Mexico	293	N/A		
85	Korukcu O [92]	2021	Turkey	497	<i>p</i> < 0.0001		
86	Obata S [93]	2021	Japan	4798	N/A		
87	Sakalidis VS [94]	2021	Australia and New Zealand	233	N/A		
88	Basu A [95]	2021	64 countries	6894	N/A		
89	Kara P [96]	2021	Turkey	445	N/A		
90	Fallon V [97]	2021	UK	614	p<0.001		
91	Mo PKH [98]	2021	China	4087	N/A		
92	Wu F [99]	2021	Shenzhen	3434	N/A		
93	Ding W [100]	2021	Wuhan	817	N/A		
94	Chrzan-Dętkoś M [101]	2021	Poland	78	p = 0.025		
95	Janevic T [102]	2021	New York	228	N/A		
96	Thompson KA [103]	2021	US	232	N/A		

ID	Authors	Publication Year	Country	Sample size	p-value	
97	Mirzaei N [104]	2021	Iran	200	N/A	
98	Hiiragi K [105]	2021	Japan	279	p = 0.17	
99	McFarland MJ [106]	2021	US	2402	N/A	
100	Zhou Y [107]	2021	China	1266	N/A	
101	Gluska H [108]	2021	Israel	421	N/A	
102	Liu CH [109]	2021	US	628	<i>p</i> < 0.01	
103	Ramirez Biermann C [110]	2021	US	162	N/A	
104	Palalioglu RM [111]	2021	Turkey	526	N/A	
105	Molgora S [112]	2020	Italian	389	N/A	
106	Patabendige M [113]	2020	Sri Lanka	257	N/A	
107	Mollard E [114]	2021	US	885	N/A	
108	Wang J [115]	2021	China	2235	N/A	
109	Zeng X [116]	2020	China	625	N/A	
110	Miranda AR MD [117]	2021	Argentina	305	N/A	
111	Nomura R [118]	2021	Brazil	1662	N/A	
112	Davis JA [119]	2021	US	31	N/A	
113	Provenzi L [120]	2021	Italy	163	N/A	
114	Kotabagi P [121]	2020	UK	11	N/A	
115	Berthelot N [122]	2020	Canada	1258	0.001	
116	Corbett GA [123]	2020	NA	71	N/A	
117	Farrell T [124]	2020	Qatar	288	N/A	
118	Stepowicz A [125]	2020	Poland	210	N/A	
119	Mayopoulos GA [126]	2021	United States	637	0.008	
120	Liu CH [127]	2021	United States	1123	N/A	
121	Farewell CV [128]	2020	United States	27	N/A	
122	Haruna M [129]	2020	Japan	2872	N/A	
123	Bender WR [130]	2020	United States	318	N/A	
124	Aksoy Derya Y [131]	2021	Turkey	48	N/A	
125	Nodoushan RJ [132]	2020	Iran	560	N/A	
126	Mortazavi F [133]	2021	Iran	484	N/A	
127	Chasson M [134]	2021	Israel	233	N/A	
128	Taubman-Ben-Ari O [135]	2020	Israel	233	N/A	
129	Moyer CA [136]	2021	Ghana	71	N/A	
130	Dib S [137]	2020	UK	1329	N/A	
131	Qi M [138]	2020	China	298	N/A	
132	Kassaw C [139]	2020	Ethiopia	178	N/A	
133	Zheng QX [140]	2020	China	331	N/A	
134	Machado MMT [141]	2021	Brazil	1041	N/A	
135	Perzow SED [142]	2021	US	135	p<0.001	
136	Pope J [143]	2021	US,Ireland,UK	573	, N/A	
137	Kotabagi P [144]	2020	UK	14	p = 0.9	
138	Naurin E [145]	2021	Sweden	0	N/A	
139	Bo HX [146]	2021	China	1309	N/A	
140	Barbosa-Leiker C [147]	2021	US	162	N/A	
141	Stampini V [148]	2021	Italy	600	N/A	
142	Li C [149]	2021	China	2201	N/A	
143	Bradfield Z [150]	2021	Australia	2840	N/A	
144	Kinser PA [151]	2021	US	524	N/A	
145	Özkan Şat S [152]	2021	Turkey	376	N/A	

ID	Authors	Publication Year	Country Sample		<i>p</i> -value
146	Kawamura H [153]	2021	Japan	297	N/A
147	Silverio SA [154]	2021	UK	710	N/A
148	Ahlers-Schmidt CR [155]	2020	US	114	N/A
149	de Arriba-García M [156]	2021	Spain	754	N/A
150	Chaves C [157]	2021	Spain	724	N/A
151	Wdowiak A [158]	2021	Poland	50	N/A
152	Ravaldi C [159]	2020	Italy	2448	N/A
153	Wyszynski DE [160]	2021	64 countries	7185	N/A
154	Sbrilli MD [161]	2021	US	199	N/A
155	Davenport MH [162]	2020	Canada	900	p < 0.01
156	Di Mascio D [163]	2020	China Saudia Arabia South Korea United	19	F
150		2020	Arab, Jordan, Canada, USA		
157	Juan J [164]	2020	USA, Iran, China, Italy, Spain, Peru, Sweden, Turkey, Korea, Australia, Canada and France	24	
158	Amaral WND [165]	2020	China, France, US, Iran, Italy, Spain, EUA, Peru, UK, Switzerland, Netherlands, Ireland, Sweden, Canada, Korea	1457	
159	Di Mascio D [166]	2020	Argentina, Australia, Belgium, Brazil, Colombia, Czech Republic, Finland, Germany, Greece, Israel, Italy, North Macedonia, Peru, Portugal, Republic of Kosovo, Romania, Russia, Serbia, Slovenia, Spain, Turkey, US	388	
160	Sentilhes L [167]	2020	Europe, Sub-Saharan Africa, North Africa	38	
161	Sahin D [168]	2021	Turkey	533	
162	Kayem G [169]	2020	France	617	
163	Adhikari EH [170]	2020	Texas, US	252	
164	Garcia Rodriguez A [171]	2020	N/A	1	
165	Islam MM [172]	2020	N/A	235	
166	Hansen JN [173]	2021	N/A	1	
167	Oltean I [174]	2021	N/A	315	
168	Wei SQ [175]	2021	N/A	438,548	
169	Singh V [176]	2021	India	132	
170	Della Gatta AN [177]	2021	China	51	
171	Di Toro F [178]	2021	N/A	1104	
172	Bellos I [179]	2021	China	158	
173	Abou Ghavda R [180]	2020	China.Italy.Iran	104	
174	Remaeus K [181]	2020	Sweden	67	
175	Mullins F [182]	2020	N/A	1606	
176	Zaigham M [183]	2020	China, Sweden, US, Korea, Honduras	108	
177	Yu N [184]	2020	China	7	
178	Galang RR [185]	2020	N/A	12	
179	Capobianco G [186]	2020	N/A	44	
180	Berthelot N [122]	2020	Canada	1258	
181	Mappa [187]	2020	Italy	178	
182	Avaz R [188]	2020	N/A	63	
183	Dubev P [189]	2020	N/A	790	
184	Pierce-Williams RAM [190]	2020	USA	44	
185	Gao YJ [191]	2020	N/A	236	
186	Yang R [192]	2020	China	65	
187	Yee J [193]	2020	N/A	9032	
188	Liu X [194]	2020	China	1947	

ID	Authors	Publication Year	Country	Sample size <i>p</i> -value
189	Novoa RH [195]	2020	N/A	322
190	Matar R [196]	2020	China, US, Republic of Korea, Honduras	136
191	Gur RE [197]	2020	America	787
192	Sakowicz A [198]	2020	America	1317
193	Taubman-Ben-Ari O [199]	2020	Israel	336
194	Ng QJ [200]	2020	Singapore	324
195	Hamzehgardeshi Z [201]	2020	Iran	318
196	Ozsurmeli M [202]	2020	Turkey	24
197	Makvandi S [203]	2020	N/A	68
198	Guo Y [204]	2020	China	20
199	Karimi L [205]	2020	N/A	571
200	Waratani M [206]	2020	Japan	1
201	Savasi VM [207]	2020	Italy	11
202	Effati-Daryani F [208]	2020	Iran	205
203	Smith V [209]	2020	N/A	92
204	Chen H [210]	2020	China	9
205	Wang Y [211]	2020	China	72
206	Janevic T [212]	2021	USA	3731
207	Cao D [213]	2020	China	10
208	Lebel C [214]	2020	Canada	1764/1757
209	Marín Gabriel MA [215]	2020	Spain	11
210	Lokken EM [216]	2020	America	155
211	Ashraf MA [217]	2020	N/A	90
212	de Vasconcelos Gaspar A [218]	2021	Portugal	7
213	Huntley BJF [219]	2020	N/A	538
214	Khoury R [220]	2020	USA	241
215	Diriba K [221]	2020	N/A	1316
216	Assiri A [222]	2016	N/A	5
217	Malik A [223]	2016	N/A	1

This table outlines the first author, year of publication, and geographical locations for all studies. Sample size has been recorded and p-value has been included where appropriate

Characteristics of studies

A total of 217 COVID-19 studies were included and 99 studies were meta-analysed. These studies were reported from various parts of the world, as indicated in the characteristics (See page 35 for Tables 2 and 3). We did not identify SARS and MERS studies that were suitably aligned to the eligibility criteria of our study.

Study design, source of data, data collection method and sample size

All 217 studies used different study designs; 107 crosssectional, 7 cohort and 7 case controlled. A total of 23 qualitative studies used self-reported methods of data collection. Real-world data from hospital admissions were used in 5 studies whilst 2 extracted data from patient medical records. The 217 study-pool comprised of a sample of 638,889 pregnant women, including 6898 women who were within 90 days of delivery. The sample sizes used within the studies varied considerably; 129 studies comprised of approximately 500 women, 40 studies consisted of 500–999 ladies, 18 studies had 1000–1999 women and 24 studies had \geq 2000 women.

Stages of pregnancy assessed

A total of 99 studies reported pregnant women during their first, second and third trimester.

Site of data collection

Many studies reported that data collection took place during routine antenatal or postnatal visits in outpatient departments, tertiary/provincial hospitals, secondary level or district hospitals, and primary healthcare facility level.

Authors	Country	Sample Size	Publication Year	Symptoms	Measure Name
Lebel C [214]	Canada	1757/ 1764	2020	Anxiety,Depression	PROMIS,EPDS
Avaz R [188]	Turkev	63	2020	Anxiety	BAI
Durankus F [10]	Turkev	260	2020	Anxiety.Depression	BAI,EPDS
Liu X [194]	China	1947	2020	Anxiety	SAS
Mappa [187]	Italy	178	2020	Anxiety	STAI-T.STAI-S
López-Morales H [66]	Argentina	72	2021	Anxiety Depression	STAI-S BDI-II
Salehi I [14]	Iran	220	2020	Anxiety	
Gur RE [197]	United States	787	2020	Anxiety Depression	GAD-7 PHO-2
Ng QJ [200]	Singapore	324	2020	Anxiety,Depression,Stress	DASS21-A, DASS21-D, DASS21-S
Effati-Daryani F [208]	Iran	205	2020	Anxiety,Depression,Stress	DASS21-A, DASS21-D, DASS21-S
Ravaldi C [17]	Italy	200	2021	Anxiety	COVID-ASSESS ques- tionnaire
Zhou Y [18]	China	544	2020	Anxiety,Depression,PTSD,Sleep orders	GAD-7,PHQ-9,PCL-5,ISI
Kahyaoglu Sut H [19]	Turkey	403	2021	Anxiety,Depression	HADS-A, HADS-D
Sinaci S [22]	Turkey	200	2020	Anxiety	STAI-T,STAI-S
Dong H [23]	China	156	2021	Anxiety,Depression	SAS,SDS
Hocaoglu M [24]	Turkey	283	2020	Anxiety,PTSD	STAI-T,STAI-S/IES-R
Yue C [27]	China	308	2021	Anxiety	SAS
Taubman-Ben-Ari O [199]	Israel	336	2020	Anxiety	self-designed question- naire
Maharlouei N [28]	Iran	540	2020	Anxiety	self-designed question- naire
Milne SJ [30]	Ireland	70	2020	Anxiety	N/A
Ceulemans M [32]	Ireland, Norway, Switzer- land, the Netherlands, and the UK	3545	2021	Anxiety,Depression,Stress	GAD-7,EDS, PSS-10
Yassa M [35]	Turkey	203	2020	Anxiety	STAI-S,STAI-T
Jiang H [39]	China	1873	2021	Anxiety,Depression,Stress	SAS,EDS, CPSS-14
Mayeur A [41]	France	88	2020	Anxiety	self-designed question- naire
Lin W [42]	China	751	2021	Anxiety,Depression	SAS,PHQ-9
Yang X [44]	Chinese	19,515	2021	Anxiety,Depression	GAD-7,PHQ-9
Akgor U [48]	Turkey	297	2021	Anxiety,Depression	HADS-A, HADS-D
Preis H [50]	US	788/4451	2020	Anxiety,Stress	GAD-7,PREPS
Dagklis T [51]	Greece	269/215	2020	Anxiety,Depression	STAI-S,STAI-T/EPDS
Esteban-Gonzalo S [53]	Spain	353	2021	Anxiety	STAI-S
Koyucu RG [54]	Turkey	729	2021	Anxiety,Depression,Stress	DASS21-A, DASS21-D, DASS21-S
Liu J [58]	US	715	2021	Anxiety,Depression	GAD-7,EPDS
Cao Y [<mark>60</mark>]	China	298	2021	Anxiety,Depression	N/A
Mappa I [<mark>61</mark>]	Italy	161	2021	Anxiety	STAI-T,STAI-S
Mehdizadehkashi A [62]	Iran	300	2021	Anxiety	self-designed question- naire
Yirmiya K [63]	Israel	1114	2021	Anxiety,Depression,Stress	GAD-7,PHQ-2,PREPS

Authors	Country	Sample Size	Publication Year	Symptoms	Measure Name
Xie M [64]	China	689	2021	Anxiety,Depression,Sleep disorders	SCL90-R,PSQI
Ge Y [<mark>65</mark>]	China	446	2021	Anxiety	SAS
López-Morales H [66]	Argentina	102	2021	Anxiety,Depression	STAI-S,BDI-II
Puertas-Gonzalez JA [67]	Spain	100	2021	Anxiety,Depression,Stress	SCL-90-R,PSS-14
Çolak S [68]	Turkey	149	2021	Anxiety, Depression, Stress	BAI,BDI,PSQI
Xu K [69]	China	274	2021	Anxiety,Depression,Stress,Sleep disorders	SAS,EPDS,CPSS,PSQI
Zilver SJM [70]	Netherlands	1102	2021	Anxiety, Depression, Stress	HADS-A,HADS-D,PSS-10
Maharlouei N [71]	Iran	540	2021	Anxiety, Depression, Stress	DASS21-A, DASS21-D, DASS21-S
Harrison V [72]	UK	205	2021	Anxiety,Depression	PASS,EPDS
Saadati N [73]	Iran	300	2021	Anxiety	HAQ
Wang Q [74]	China	15,428	2021	Anxiety,Depression	GAD-7,PHQ-9
Behmard V [75]	Iran	801	2021	Anxiety	CDAS
Hamzehgardeshi Z [201]	Iran	318	2021	Anxiety,Depression	PRAQ,EPDS
Jelly P [78]	India	333	2021	Anxiety	GAD-7
Wang Q [74]	China	19,515	2021	Anxiety,Depression	GAD-7,PHQ-9
Zhang Y [80]	China	1794/560	2021	Anxiety,Stress	SAS,IES
Masjoudi M [81]	Iran	215	2021	Anxiety,Stress	CDAS,PSS-14
Shangguan F [82]	China	2120	2021	Anxiety,Stress	GAD-7,PSS
Tsakiridis I [83]	Greece	505	2021	Anxiety,Depression	STAI-S, STAI-T/EPDS
Brik M [84]	Spain	109/164	2021	Anxiety	STAI-S,STAI-T/EPDS
Effati-Daryani F [85]	Iran	437	2021	Anxiety,Depression,Stress	DASS21-A, DASS21-D, DASS21-S
Lubián López DM [88]	Spain	514	2021	Anxiety	STAI-S,STAI-T/EPDS
Maleki A [89]	Iran	2336	2021	Anxiety	GAD-7
Khoury JE [90]	Canada	304	2021	Anxiety,Depression,Stress,Sleep disorders	GAD-7,CES-D,PSS-10,ISI
Suárez-Rico BV [91]	Mexico	293	2021	Anxiety	STAI-T
Obata S [93]	Japan	4798	2021	Anxiety,Depression	K6,EPDS
Mo PKH [98]	China	4087	2021	Anxiety,Depression	GAD-7,PHQ-9
Wu F [99]	Shenzhen	3434	2021	Anxiety,Depression	GAD-7,PHQ-9
Ding W [100]	Wuhan	817	2021	Anxiety	SAS
Mirzaei N [104]	Iran	200	2021	Anxiety,Depression	HADS-A, HADS-D
Ramirez Biermann C [110]	US	162	2021	Anxiety,Depression	self-designed question- naire
Palalioglu RM [111]	Turkey	526	2021	Anxiety	self-designed question- naire
Molgora S [112]	Italian	389	2020	Anxiety,Depression	STAI-S,STAI-T/EPDS
Patabendige M [113]	Sri Lanka	257	2020	Anxiety,Depression	HADS-A, HADS-D
Zeng X [116]	China	516	2020	Anxiety,Depression,Sleep disorders	GAD-7,EPDS, DSM-IV
Nurrizka RH [77]	Indonesia	36	2021	Anxiety	DASS-21-A
Wu Y [9]	China	1285	2020	Depression	EPDS
Wang Y [211]	China	72	2020	Depression,PTSD	EPDS,PCL-C
Medina-Jimenez V [29]	Mexico	503	2020	Depression,Stress	EPDS,PSS
Matsushima M [31]	Japan	1777	2020	Depression	EPDS

Authors	Country	Sample Size	Publication Year	Symptoms	Measure Name
Gildner TE [33]	US	1856	2020	Depression	EPDS
Shayganfard M [34]	Iran	66	2020	Depression, Stress	EPDS,PSS-14
Silverman ME [36]	US	516	2020	Depression	EPDS
Muhaidat N [37]	Jordan	944	2020	Depression	self-designed question- naire
Thayer ZM [38]	US	2099	2021	Depression	EPDS
Zhang CJP [43]	China	1901	2020	Depression,PTSD	EPDS,PCL-S
Khamees RE [45]	Egypt	120	2021	Depression	EPDS
Silverman ME [47]	US	485	2020	Depression	EPDS
Shahid A [49]	Pakistan	552	2020	Depression,Sleep disorders	EPDS,self-designed questionnaire
lonio C [52]	Italy	75	2021	Depression	EPDS
Overbeck G [55]	Denmark	330	2021	Depression	MDI
Kachi Y [<mark>56</mark>]	Japan	270	2021	Depression	EPDS
Smith CL [59]	USA	83	2021	Depression,Stress	EPDS,PSS-10
King LS [76]	US	725	2021	Depression	EPDS
Korukcu O [92]	Turkey	497	2021	Depression	EDS
Zhou Y [107]	China	1266	2021	Depression	PHQ-9
Chaves C [157]	Spain	450	2021	Depression	EPDS
Davis JA [119]	US	31	2021	Stress	PSS-10
lonio C [<mark>52</mark>]	Italy	75	2021	PTSD	IES-R
Basu A [95]	64 countries	5712	2021	PTSD	IES-6
Kara P [96]	Turkey	445	2021	PTSD	PCL-5
Wang J [115]	China	2235	2021	Sleep disorders	ISI

This table outlines first author, year of publication, and geographical location for the studies. Sample size, mental health symptoms and names of measures were included

Mental health outcomes assessed

Sixty-four reported data on depressive symptoms, 82 on symptoms of anxiety, 20 on symptoms of stress, 7 on PTSD symptoms, and 8 on symptoms of sleep disorders. Detailed characteristics of the systematically included studies and those meta-analysed are listed in Tables 1 and 2 (see page 33 for Table 1 and page 35 for Table 2).

Meta-analysis

Depression

Edinburgh Postnatal Depression Scale (EPDS), the Patient Health Questionnaire 9-item (PHQ-9), and the depression subscale of the Hospital Anxiety and Depression Scale (HADS-D) were the commonly used data collection tools to assess symptoms of depression. The pooled prevalence of depression was 24.91% with a 95% CI of 21.37–29.02% (see Fig. 2).

Anxiety

Anxiety symptoms were commonly measured by the State-Trait Anxiety Inventory (STAI, with two subscales STAI-T and STAI-S), the General Anxiety Disorder 7-item (GAD-7), and Self-rating Anxiety Scale (SAS). Anxiety prevalence was 32.88% with a 95% CI of 29.05 to 37.21% (see Fig. 3).

Str ess

Tools like the Perceived Stress Scale (PSS, with 10-item and 14-item versions), and the stress subscale of the 21-item Depression Anxiety and Stress Scale (DASS21-S) were frequently used to evaluate stress symptoms. The pooled prevalence of stress among perinatal women was 29.44% (95% CI: 18.21–47.61%) (see Fig. 4).

Post-traumatic stress disorder

PTSD symptoms were typically measured by the DSM-V Post-Traumatic Stress Disorder Checklist (PCL-5) and the Impact of Events Scale (IES). The studies reporting PTSD symptoms were heterogeneous resulting in a pooled prevalence of 27.93% with a 95%CI of 9.05–86.15% (see Fig. 5).

Insomnia

The Insomnia Severity Index (ISI) and the Pittsburgh Sleep Quality Index (PSQI) were to assess and report symptoms associated with sleep disorders. The pooled prevalence was 24.38% with a 95% CI of 11.89–49.96% (see Fig. 6).

Author	Sample Size	Country	Measure	Prevalence with 95% CI	Weight (%)
Ramirez Biermann C	162	us	self-designed questionnaire	4 94 [2 43 10 05]	1.21
Wang Y	72	China	EPDS	17.40 [9.46, 32.00]	1.31
Chiara Ionio	75	Italy	EPDS	18.14 [10.08, 32.64]	1.32
López-Morales H	72	Argentina	BDI-II	32.70 [19.99, 53.50]	1.41
Shayganfard M	66	Iran	EPDS -	- 45.08 [27.76, 73.21]	1.41
Smith CL	83	US	EPDS -	- 46.00 [29.87, 70.83]	1.46
López-Morales H	102	Argentina	BDI-II -	32.70 [21.62, 49.45]	1.47
Puertas-Gonzalez JA	100	Spain	SCL-90-R	36.49 [24.29, 54.83]	1.47
Overbeck G	330	Denmark	MDI —	8.08 [5.44, 12.00]	1.48
Maharlouei N	540	Iran	DASS21-D -	5.19 [3.55, 7.59]	1.49
Dagklis T	215	Greece	EPDS —	14.90 [10.24, 21.69]	1.50
Zhou Y	544	China	PHQ-9	5.30 3.64, 7.71	1.50
Silvermon ME	120	Egypt	EPDS -	P201 E02 11 241	1.51
Colek S	140	Turkey	BDI -	43 76 [31 66 60 48]	1.53
Xu K	274	Chipa	EPDS -	16 10 [11 67 22 22]	1.53
Mirzaei N	200	Iran	HADS-D	25 33 [18 42 34 84]	1.54
Brik M	164	Spain	EPDS	37.80 [27.57, 51.83]	1.54
Dong H	156	China	SDS -	- 50.60 [36.97, 69.26]	1.54
Patabendige M	257	Sri Lanka	HADS-D	19.50 [14.32, 26.55]	1.54
Akgor U	297	Turkey	HADS-D -	16.31 [11.99, 22.19]	1.54
Effati-Daryani F	205	Iran	DASS21-D	32.70 [24.42, 43.78]	1.55
Ng QJ	324	Singapore	DASS21-D -	18.20 [13.72, 24.13]	1.56
Harrison V	205	UK	EPDS -	45.40 [34.49, 59.77]	1.56
Kachi Y	270	Japan	EPDS -	25.20 [19.15, 33.17]	1.56
Silverman ME	516	US	EPDS -	12.40 [9.54, 16.11]	1.57
Tsakiridis I	505	Greece	EPDS -	13.50 [10.46, 17.43]	1.57
Durankuş F	260	Turkey	EPDS -	35.40 [27.45, 45.64]	1.57
Cao Y	298	China	N/A	31.21 [24.43, 39.88]	1.58
Gur RE	787	us	PHQ-2 -	10.20 [8.10, 12.85]	1.59
Medina-Jimenez V	503	Mexico	EPDS -	17.50 [13.90, 22.03]	1.59
Khoury JE	304	Canada	CES-D -	57.10 [45.50, 71.66]	1.59
Effati-Daryani F	437	Iran	DASS21-D -	22.00 [17.54, 27.59]	1.59
Hamzehgardeshi Z	318	Iran	EPDS -	42.10 [33.70, 52.60]	1.59
Xie M	689	China	SCL90-R -	13.50 [10.85, 16.80]	1.59
Zeng X	516	China	EPDS -	21.12 [17.10, 26.09]	1.60
Lubián López DM	514	Spain	EDS -	21.30 [17.25, 26.31]	1.60
Molgora S	389	Italy	EPDS -	34.20 [27.74, 42.17]	1.60
Kahyaoglu Sut H	403	Turkey	HADS-D -	- 56.30 [46.24, 68.55]	1.60
Chaves C	450	Spain	EPDS	58.05 [48.14, 70.00]	1.61
Korukcu O	497	Turkey	EDS	50.49 [42.35, 60.20]	1.61
Zilver SJM	1102	Netherlands	HADS-D	13.20 [11.09, 15.72]	1.61
Shahid A	552	Pakistan	EPDS	39.00 [32.87, 46.27]	1.61
Firmiya K	715	israel	EDDS	15.00 [13.27, 10.34]	1.62
Lin W	715	China	PHO.9	35.00[30.30, 41.34]	1.62
King IS	725		EPDS	42 00 [36 24 48 67]	1.62
Kowici RG	729	Turkey	DASS21-D	44.60 [38.54 51.61]	1.62
Wu F	3434	China	PHO-9	6 90 [6 05 7 87]	1.63
Muhaidat N	944	Jordan	self-designed questionnaire	42.37 [37.24, 48.21]	1.63
Matsushima M	1777	Japan	EPDS	17.00 [15.02, 19.24]	1.63
Wu Y	1285	China	EPDS	29.60 [26.26, 33.37]	1.63
Zhou Y	1266	China	PHQ-9	41.63 [37.23, 46.55]	1.63
Thayer ZM	2099	US	EPDS	23.60 [21.34, 26.10]	1.63
Gildner TE	1856	US	EPDS	32.63 [29.61, 35.95]	1.63
Lebel C	1764	Canada	EPDS	37.00 [33.59, 40.75]	1.64
Zhang CJP	1901	China	EPDS	34.00 [30.92, 37.38]	1.64
Ceulemans M	3545	Ireland, Norway, Switzerland, the Netherlands, and the UK	EDS 📕	15.00 [13.68, 16.45]	1.64
Jiang H	1873	China	EDS	45.90 [41.91, 50.27]	1.64
Obata S	4798	Japan	EPDS	14.60 [13.48, 15.82]	1.64
Mo PKH	4087	China	PHQ-9	48.70 [45.80, 51.78]	1.64
Wang Q	19515	China	PHQ-9	16.10 [15.50, 16.73]	1.64
Wang Q	15428	China	PHQ-9	43.60 [42.23, 45.01]	1.64
Yang X	19515	China	PHQ-9	44.60 [43.36, 45.88]	1.64
Overall			•	24.91 [21.37, 29.02]	
Heterogeneity: r ² = 0.3	7, I ² = 99.	03%, H ² = 103.46			
Test of $\theta_i = \theta_i$: Q(63) =	4805.41,	p = 0.00			
Test of θ = 0: z = 41.18	8, p = 0.00	1		-	
			4 6 16 32 6	4	
Random-effects REML r Sorted by: _meta_se	nodel				

Fig. 2 Forest plot showing prevalence of depressive symptoms. Legend. The forest plot shows the first author, sample size and geographic location for the included studies. Measure of depressive symptoms, prevalence rate with confidence internal and weighting of results have also been displayed

Fig. 3 Forest plot showing prevalence of anxiety symptoms. Legend. The above forest plot shows the first author, sample size and geographic location for the included studies. Measure of anxiety symptoms, prevalence rate with confidence internal and weighting of results have also been displayed

	Sample							Prevale	nce	Weight
Author	Size	Country	Measure					with 95%	6 CI	(%)
Maharlouei N	540	Iran	DASS21-S	-	-			0.93 [0.39	, 2.24]	4.41
Davis JA	31	US	PSS-10			-	-	20.23 [8.42	, 48.59]	4.41
Effati-Daryani F	437	Iran	DASS21-S	5		-		2.12[1.11	, 4.06]	4.72
Shayganfard M	66	Iran	PSS-14			-		26.39 [15.27	, 45.62]	4.84
Smith CL	83	US	PSS-10				-	- 71.50 [44.39	, 115.15]	4.92
Puertas-Gonzalez JA	100	Spain	PSS-14				-	56.62 [38.13	, 84.09]	4.99
Ng QJ	324	Singapore	DASS21-S	5		-		11.10 [7.85	, 15.70]	5.03
Effati-Daryani F	205	Iran	DASS21-S	5			۰.	32.70 [24.42	, 43.78]	5.07
Khoury JE	304	Canada	PSS-10				1	81.20 [60.90	, 108.27]	5.08
Masjoudi M	215	Iran	PSS-14				-	49.30 [37.73	, 64.41]	5.09
Xu K	274	China	CPSS					42.70 [33.61	, 54.25]	5.10
Medina-Jimenez V	503	Mexico	PSS					33.20 [27.58	, 39.97]	5.13
Zhang Y	560	China	IES					67.10 [56.26	, 80.03]	5.13
Yirmiya K	1114	Israel	PREPS					13.81 [11.65	, 16.37]	5.14
Koyucu RG	729	Turkey	DASS21-S	5			•	32.20 [27.57	, 37.61]	5.14
Jiang H	1873	China	CPSS-14					89.10 [77.05	, 103.04]	5.14
Zilver SJM	1102	Netherlands	PSS-10					41.60 [36.90	, 46.89]	5.15
Shangguan F	2120	China	PSS					50.70 [46.56	, 55.21]	5.16
Ceulemans M	3545	Ireland, Norway, Switzerland, the Netherlands, and the UK	PSS-10					50.60 [47.38	, 54.04]	5.16
Preis H	4451	US	PREPS					47.00 [44.31	, 49.85]	5.17
Overall							+	29.44 [18.21	, 47.61]	
Heterogeneity: r ² = 1.1	6, I ² = 99	.49%, H ² = 194.94								
Test of $\theta_i = \theta_j$: Q(19) =	595.95, p	p = 0.00								
Test of θ = 0: z = 13.79	9, p = 0.00	D								
				1/2	2	8	32	_		

Random-effects REML model Sorted by: _meta_weight

Figure 4 Forest plot showing prevalence of stress symptoms. Legend. The above forest plot shows the first author, sample size and geographic location for the included studies. Measure of stress symptoms, prevalence rate with confidence internal and weighting of results have also been displayed

Author	Sample Size	Country	Measure					P wi	revalen th 95%	ce Cl	Weight (%)
Zhou Y	544	China	PCL-5	-				0.90 [0.37,	2.19]	13.42
Wang Y	72	China	PCL-C			-	-	17.40 [9.46,	32.00]	14.04
Ionio C	75	Italy	IES-R				-	54.61 [34.66,	86.04]	14.30
Kara P	445	Turkey	PCL-5				-	91.24 [65.68,	126.74]	14.46
Hocaoglu M	283	Turkey	IES-R				-	76.00 [57.85,	99.84]	14.52
Zhang CJP	1901	China	PCL-S					40.00 [36.49,	43.84]	14.63
Basu A	5712	64 countries	IES-6					42.76 [40.58,	45.06]	14.64
Overall								27.93 [9.05,	86.15]	
Heterogeneit	у: т ² = 2.2	6, I ² = 99.70%	, H ² = 331.15								
Test of $\theta_i = \theta$: Q(6) = 1	21.34, p = 0.0	0								
Test of $\theta = 0$:	z = 5.79,	p = 0.00									
				1/2	ź	8	32	-			
Developer offere		and all									

Random-effects REML model Sorted by: _meta_se

Fig. 5 Forest plot showing symptoms of PTSD. Legend. The above forest plot shows the first author, sample size and geographic location for the included studies. Measure of PTSD symptoms, prevalence rate with confidence internal and weighting of results have also been displayed

	Sample									Prevalen	ce	Weight
Author	Size	Country	Measure							with 95%	CI	(%)
Zhou Y	544	China	ISI	-	-					2.60 [1.53,	4.41]	11.93
Çolak S	149	Turkey	PSQI						-	- 71.20 [49.94,	101.50]	12.37
Khoury JE	304	Canada	ISI				-	ł		19.20 [14.43,	25.54]	12.50
Xu K	274	China	PSQI						-	37.60 [29.45,	48.01]	12.57
Zeng X	516	China	DSM-IV				-			17.54 [13.98,	22.01]	12.59
Shahid A	552	Pakistan	self-designed questionnaire							34.00 [28.51,	40.55]	12.66
Xie M	689	China	PSQI							74.50 [62.77,	88.42]	12.66
Wang J	2235	China	ISI							18.90 [17.00,	21.01]	12.72
Overall							-			24.38 [11.89,	49.96]	
Heterogene	ity: τ ² = 1.	.05, I ² = 98	.96%, H ² = 95.73									
Test of $\theta_i =$	θ _j : Q(7) =	315.49, p	= 0.00									
Test of $\theta =$	0: z = 8.72	2, p = 0.00										
				2	4	8	16	32	64			

Random-effects REML model Sorted by: _meta_se

Fig. 6 Forest plot showing symptoms of sleep disorders. Legend. The above forest plot shows the first author, sample size and geographic location for the included studies. Measure of sleep disorder symptoms, prevalence rate with confidence internal and weighting of results have also been displayed

Author	Measure					Prevalen with 95%	Weight(%) (%)	
trimester 1								
Maharlouei N	DASS21-D		-			8.30 [2.54,	27.12]	0.96
Xu K	EPDS			_		50.00 [18.77,	133.22]	1.12
Overbeck G	MDI		-	-	-	25.25 [11.51,	55.38]	1.28
Çolak S	BDI					16.53 [7.90,	34.61]	1.33
Patabendige M	HADS-D		-	_		24.00 [12.54,	45.93]	1.40
Brik M	EPDS			_	-	43.22 [23.80,	78.47]	1.45
Korukcu O	EDS			-	-	49.18 [31.98,	75.63]	1.58
Matsushima M	EPDS			-		20.00 [14.53,	27.53]	1.65
Liu J	EPDS			-		21.00 [15.47,	28.51]	1.66
Wu F	PHQ-9					9.70 [7.98,	11.80]	1.71
Jiang H	EDS				1	44.80 [38.13,	52.63]	1.72
Heterogeneity: T ²	= 0.29, I ² = 89.47%, H ² = 9.50					24.61 [17.12,	35.37]	
Test of $\theta_i = \theta_j$: Q(10) = 162.31, p = 0.00			•				
		2	8	32	128			

Random-effects REML model Sorted by: _meta_se

Fig. 7 A forest plot showing the subgroup analysis for depressive symptoms in the 1st trimester. Legend. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Author	Measure		Prevalence with 95% CI	Weight(%) (%)	
trimester 2					
Maharlouei N	DASS21-D		2.70 [1.11, 6.58]	1.19	
Çolak S	BDI		16.37 [7.43, 36.06]	1.28	
Overbeck G	MDI		4.44 [2.33, 8.45]	1.41	
Brik M	EPDS		35.05 [21.14, 58.12]	1.52	
Patabendige M	HADS-D		22.45 [13.97, 36.08]	1.54	
Xu K	EPDS		12.04 [7.99, 18.14]	1.59	
Korukcu O	EDS	-	51.08 [39.26, 66.46]	1.68	
Wu F	PHQ-9	-	5.60 [4.36, 7.20]	1.68	
Liu J	EPDS	-	38.20 [30.02, 48.61]	1.69	
Matsushima M	EPDS	-	17.90 [14.83, 21.60]	1.71	
Jiang H	EDS		45.90 [39.57, 53.24]	1.72	
Heterogeneity: r ²	= 0.88, I ² = 97.49%, H ² = 39.84	•	16.52 [9.31, 29.33]		
Test of $\theta_i = \theta_j$: Q(10) = 319.90, p = 0.00	•			
		2 8 32	128		
andom affacts Pl	EMI model				

Sorted by: _meta_se

Fig. 8 A forest plot showing the subgroup analysis for depressive symptoms in the 2nd trimester. Legend. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Subgroup analysis

The I² evaluated for symptoms of depression, anxiety, PTSD, stress, and sleep disorders were over 98%, which demonstrates a high heterogeneity among the studies. Therefore, a subgroup analysis was conducted to further evaluate the heterogeneity. To determine the symptom prevalence, women were assessed at different stages of their pregnancy and the dataset was categorised based on the trimesters:1st trimester (<12 weeks), 2nd trimester (13–27 weeks), 3rd trimester (28–41 weeks)] and the immediate post-partum period (immediately after child-birth and up to 6 weeks) for studies that reported follow-up details.

The heterogeneity of depressive symptoms was lower in comparison to anxiety, PTSD, stress, and sleep problems. Heterogeneity within the 1st trimester was 89.47%. I² of the anxiety group during the 1st trimester and 2nd trimester were 88.91 and 92.35%, respectively. These appear to be similar to the I² values of depression. I² for stress associated with the 2nd and 3rd trimesters were 78.57 and 64.65%, respectively, indicating mild heterogeneity. Intuitively, Maharlouei and colleagues study reported a small prevalence, thus could be an influencing factor for the heterogeneity reported. I² for PTSD across three trimesters were 24.67, 89.47 and 81.62%, respectively. I² was 0% during the 1st trimester within the groups of participants reporting sleep disturbance. 1st trimester group showed relatively low heterogeneity across mental health symptoms, thus strictly stipulating the gestational weeks of the included pregnancy helped reduce the heterogeneity. Forest plots were generated for 1st trimester, 2nd trimester, 3rd trimester, post-partum and overall, for symptoms of depression (see Figs. 7, 8, 9, 10 and 11), anxiety (see Figs. 12, 13, 14, 15 and 16), stress (see Fig. 17), PTSD (see Fig. 18), sleep disorders (see Fig. 19). Funnel plots were also generated: depression (see Fig. 20), anxiety (see Fig. 21), stress, (see Fig. 22), PTSD (see Fig. 23), and sleep disorders (see Fig. 24).

Publication bias and sensitivity analysis

Publication bias and sensitivity analysis tests were conducted to assess the reliability of the data as some studies had large standard errors that would produce undesirable effects. Copas Selection Model was used to select studies for the sensitivity analysis. The *p*-values of residual selection bias were evaluated (see Fig. 25, 26, 27, 28 and 29). Studies with a *p*-value of >0.1 indicated that the residual selection had minimal bias and, the selected studies can be represented. The proportions identified were 67.84,

Author	Measure					Prevalence with 95% CI	Weigh (%	nt(%) 5)
trimester 3								
Overbeck G	MDI					10.73 [5.24,	21.98]	1.34
Xu K	EPDS				_	23.80 [11.70,	48.42]	1.35
Çolak S	BDI					- 78.50 [40.76,	151.17]	1.40
Brik M	EPDS			-		24.98 [13.49,	46.26]	1.43
Ionio C	EPDS					18.14 [10.08,	32.64]	1.45
Patabendige M	HADS-D		-	-		14.29 [8.12,	25.16]	1.47
Maharlouei N	DASS21-D			-		6.30 [4.01,	9.89]	1.56
Liu J	EPDS			-		40.00 [26.81,	59.68]	1.60
Korukcu O	EDS				-	60.40 [45.23,	80.66]	1.67
Wu F	PHQ-9		-			5.40 [4.18,	6.98]	1.68
Zeng X	EPDS			-		21.12 [17.10,	26.09]	1.70
Matsushima M	EPDS					15.20 [12.53,	18.43]	1.71
Jiang H	EDS					46.90 [39.80,	55.27]	1.72
Heterogeneity: T ²	² = 0.62, I ² = 95.92%, H ² = 24.49					21.05 [13.43,	32.99]	
Test of $\theta_i = \theta_j$: Q	(12) = 315.92, p = 0.00			-				
이 이 가슴을 가슴 가지?		2	8	32	128			
Random-effects RF	-ML model							

Sorted by: _meta_se

Fig. 9 A forest plot showing the subgroup analysis for depressive symptoms in the 3rd trimester. Legend. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

100 and 59.49% for depression, anxiety, and sleep disorders, respectively. For studies reporting stress and PTSD, the Copas Selection Model could not provide a decision, indicating the previous conclusions of high heterogeneity is accurate.

A summary of studies used within the Copas Selection Model and Random Effects Model indicate that the two models have no significant difference (see Table 4). P-value of the changes between these conclusions were 0.1108 for depressive symptoms, 0.638 for anxiety symptoms, and 0.1042 for sleep disorder symptoms. The p-value of the Egger's test was 0.0256 for studies of depressive symptoms, revealing the existence of publication bias (see Table 5). The p-values of 0.256 and 0.998 indicate that it is challenging to detect publication bias for studies associated with symptoms of anxiety and sleep disorders (see Table 5).

Discussion

Main findings

Our study demonstrates that symptoms of depression, anxiety, PTSD, stress, and sleep problems were common throughout the pregnancy period and after childbirth during the COVID-19 pandemic with 24.9% of women reporting symptoms of depression, 32.8% anxiety, 29.44% stress, 27.93% PTSD, and 24.38% sleep disorders. The lack of research conducted to assess the mental health impact of SARS and MERS on pregnant women is a significant limitation as such data could support preparation for similar pandemics in the future. Our metaanalyses indicate the clear impact of COVID-19 on the mental health of pregnant and post-partum mothers, with a pooled prevalence of the multiple symptomatology of depression, anxiety, PTSD, stress, and sleep disorder.

Strengths and limitations

To our knowledge, this is the first systematic review and meta-analysis to focus on mental health outcomes in women during pregnancy and after childbirth during the Covid-19 pandemic. The searches were not limited by geographical location or language, therefore, further increasing the chances for all relevant literature to be identified. The MESH terms used did not consider all types of obstetric or gynaecology conditions but did include the common conditions. The variety of screening

Author	Measure					Prevalent with 95%	ce Cl	Weight(%) (%)
postpartum								
Boekhorst MGBM	E(P)DS	-	-			8.50 [3.40,	21.22]	1.17
Shayganfard M	EPDS			_	-	53.37 [27.98,	101.81]	1.41
Zeng X	EPDS			-		10.09 [5.41,	18.82]	1.42
Lorentz MS	EPDS				_	40.00 [22.72,	70.43]	1.47
Janevic T	PHQ-2	_				5.83 [3.33,	10.21]	1.48
Chrzan-Dętkoś M	EPDS			_	-	74.35 [44.73,	123.59]	1.52
Mariño-Narvaez C	EPDS					37.30 [23.36,	59.56]	1.55
Zanardo V	EPDS					28.60 [18.15,	45.06]	1.56
Oskovi-Kaplan ZA	EPDS		-	-		14.70 [10.15,	21.30]	1.62
Pariente G	EPDS		-	-		16.70 [11.75,	23.74]	1.63
Hiiragi K	EPDS		-	F		14.00 [9.98,	19.63]	1.64
Ostacoli L	EPDS			-		30.70 [22.01,	42.82]	1.64
Molgora S	EPDS			-		26.30 [18.98,	36.45]	1.64
Mirzaei N	HADS-D			-		23.27 [16.80,	32.22]	1.64
Thompson KA	CES-D			-		24.90 [18.49,	33.53]	1.66
An R	EPDS			-		33.50 [25.14,	44.65]	1.67
Chaves C	EPDS			-	ŀ	56.95 [44.84,	72.33]	1.69
Suárez-Rico BV	EPDS			-		39.20 [31.00,	49.56]	1.69
Gluska H	EPDS			-		21.40 [16.95,	27.01]	1.69
Miranda AR MD	PDSS-SF			-		37.00 [29.33,	46.68]	1.69
Hui PW	EPDS					14.40 [11.99,	17.30]	1.71
Mollard E	N/A					18.60 [15.70,	22.03]	1.72
Liu CH	CES-D					38.57 [32.84,	45.29]	1.72
Fallon V	EPDS					43.00 [36.65,	50.45]	1.72
Liang P	EPDS					30.00 [25.90,	34.76]	1.72
Obata S	EPDS					12.50 [11.21,	13.93]	1.73
Ceulemans M	EDS					13.10 [12.02,	14.28]	1.74
McFarland MJ	EPDS				1	50.70 [46.80,	54.92]	1.74
Ceulemans M	EDS					23.60 [21.82,	25.53]	1.74
Heterogeneity: $\tau^2 =$	0.30, I ² = 97.03%, H ² = 33.71					24.96 [20.26,	30.76]	
Test of $\theta_i = \theta_j$: Q(28)	3) = 969.56, p = 0.00			•				
		2	8	32	128			

Random-effects REML model Sorted by: _meta_se

Fig. 10 A forest plot showing the subgroup analysis for depressive symptoms postpartum. Legend. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Author	Measure				Prevalence Weight(% with 95% Cl (%)	%)
Overall Heterogeneit	ν: τ ² = 0.45, I ² = 97.05%, H ² = 33.90			٠	22.49 [18.91, 26.74]	
Test of $\theta_i = \theta$; Q(63) = 1771.12, p = 0.00					
Test of group	differences: $Q_b(3) = 2.06$, p = 0.56	2	8	32	128	

Random-effects REML model Sorted by: _meta_se

Fig. 11 A forest plot showing the overall subgroup analysis for depressive symptoms. Legend. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Author	Measure					Prevalen with 95%	Weight (%)	
trimester 1								
Çolak S	BAI			-		5.00 [1.42,	17.61]	0.73
Xu K	SAS		_	-	_	31.25 [10.86,	89.94]	0.87
Maharlouei N	DASS21-A			-		19.40 [8.49,	44.32]	1.06
Patabendige M	HADS-A		_	- ·		16.00 [7.51,	34.08]	1.13
Brik M	STAI-T				_	47.86 [23.10,	99.17]	1.15
Brik M	STAI-S				_	51.28 [24.76,	106.21]	1.15
Ge Y	SAS					39.50 [22.01,	70.89]	1.29
Palalioglu RM	self-designed questionnaire		_	_		12.06 [7.01,	20.75]	1.32
Esteban-Gonzalo S	STAI-S			_	-	68.48 [41.06,	114.22]	1.35
Ding W	SAS		-			20.90 [13.33,	32.76]	1.41
Behmard V	CDAS		-	-		17.57 [11.51,	26.83]	1.43
Liu J	GAD-7					9.70 [6.37,	14.77]	1.43
Saadati N	HAQ					40.00 [26.81,	59.68]	1.45
Shangguan F	GAD-7			-		22.70 [18.16,	28.37]	1.57
Jiang H	SAS		1			18.10 [14.70,	22.29]	1.58
Wu F	GAD-7					11.10 [9.23,	13.35]	1.59
Heterogeneity: $\tau^2 = 0$.33, I ² = 88.91%, H ² = 9.02			•		22.06 [16.08,	30.25]	
Test of $\theta_i = \theta_j$: Q(15)	= 109.67, p = 0.00			•				
		2	8	32	128			

Random-effects REML model Sorted by: _meta_weight

Fig. 12 A forest plot showing the subgroup analysis for anxiety symptoms in the 1st trimester. Legend First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Author	Measure				Prevalence with 95% CI	Weight (%)	
trimester 2							
Çolak S	BAI	_	-	_	7.90 [2.67, 23.34]	0.85	
Brik M	STAI-S				60.42 [33.02, 110.56]	1.27	
Brik M	STAI-T			_	60.17 [32.90, 110.03]	1.27	
Patabendige M	HADS-A		-	-	20.41 [12.49, 33.36]	1.37	
Palalioglu RM	self-designed questionnaire		-	-	17.33 [11.39, 26.38]	1.43	
Xu K	SAS			-	11.57 [7.63, 17.55]	1.44	
Saadati N	HAQ				52.00 [35.13, 76.98]	1.46	
Esteban-Gonzalo S	STAI-S			-	64.79 [45.57, 92.11]	1.49	
Ge Y	SAS				27.36 [19.26, 38.86]	1.49	
Maharlouei N	DASS21-A			-	22.30 [15.76, 31.55]	1.49	
Ding W	SAS			-	21.10 [15.54, 28.64]	1.52	
Liu J	GAD-7			-	23.90 [18.16, 31.45]	1.54	
Behmard V	CDAS		-		17.12 [13.05, 22.45]	1.54	
Shangguan F	GAD-7			-	21.00 [16.85, 26.18]	1.57	
Wu F	GAD-7		-		9.40 [7.71, 11.46]	1.58	
Jiang H	SAS				17.10 [14.05, 20.81]	1.58	
Heterogeneity: $\tau^2 = 0$.32, I ² = 92.35%, H ² = 13.07			•	23.37 [17.36, 31.45]		
Test of $\theta_i = \theta_j$: Q(15)	= 166.14, p = 0.00			•			
		2	8	32	128		

Random-effects REML model Sorted by: _meta_weight

Fig. 13 A forest plot showing the subgroup analysis for anxiety symptoms in the 2nd trimester. Legend. First author and outcomes measures have

been included. Prevalence rate with confidence internal and weighting of results have been shown

tools used across the included studies must be considered when interpreting the results of this review. Direct comparisons cannot be made where the same screening tool was not used. Furthermore, most studies used selfreported questionnaires, with no clinical follow-up to confirm diagnoses. Therefore, the results cannot be interpreted as prevalence of mental illness, but rather prevalence of symptomatology.

Interpretation

Similar to our study, other research has demonstrated that the extent and severity of mental health impacts increased in women throughout pregnancy and after childbirth during humanitarian disasters and pandemics [224]. The subgroup analysis showed that the prevalence of symptoms of depression ranged from 16.52 to 24.96% across the four time points. In terms of anxiety symptoms, prevalence ranged from 22.06 to 32.09%. Likewise, Grumi et al. (2021) found prevalence of depressive and anxious symptoms ranges between

26 and 32% amongst pregnant women through the COVID-19 pandemic [225]. Contrary to previous findings, we found that pregnant women and women who have just given birth experience higher levels of anxiety, especially in the 1st trimester and post-partum, compared to depressive symptoms [226]. In terms of symptoms of anxiety and PTSD, some research has found that these symptoms have been elevated in pregnant women throughout the COVID-19 pandemic [24]. Women who became pregnant or gave birth during the pandemic suffered from various symptoms of poor mental health across all stages of their pregnancy and postpartum. It is unclear as to the reason for this observation, and the impact of this in a real-time scenario.

These findings could be due to pressure of being a first-time mother or, general stress and health anxiety regarding how and when to access care from midwives and obstetricians as part of routine and emergency maternity care due to the Covid-19 pandemic. Similar to our findings, other studies carried out during the

Author	Magazin					Prevalen	Prevalence		
Autrior	measure					with 95%		(%)	
trimester 3									
Xu K	SAS			-		19.05 [8.82,	41.15]	1.11	
Çolak S	BAI			_	-	82.68 [40.59,	168.41]	1.17	
Brik M	STAI-T			-	-	43.40 [22.45,	83.89]	1.22	
Nurrizka RH	DASS21-A			-	-	44.40 [23.01,	85.69]	1.22	
Brik M	STAI-S				-	45.59 [23.66,	87.84]	1.22	
Patabendige M	HADS-A		_			16.33 [9.56,	27.90]	1.33	
Liu J	GAD-7					34.00 [22.48,	51.42]	1.44	
Saadati N	HAQ			-	-	60.00 [40.22,	89.52]	1.45	
Esteban-Gonzalo S	STAI-S			-	-	68.25 [48.34,	96.36]	1.49	
Palalioglu RM	self-designed questionnaire		-	-		16.73 [11.93,	23.46]	1.50	
Yue C	SAS		-	-		14.30 [10.39,	19.67]	1.51	
Maharlouei N	DASS21-A			-		17.80 [13.37,	23.70]	1.53	
Behmard V	CDAS			-		21.44 [16.16,	28.45]	1.54	
Ge Y	SAS			-		43.28 [33.57,	55.82]	1.55	
Ding W	SAS			-		20.70 [16.50,	25.97]	1.57	
Mehdizadehkashi A	self-designed questionnaire			-		51.30 [40.91,	64.33]	1.57	
Jiang H	SAS			-		19.40 [15.77,	23.87]	1.58	
Wu F	GAD-7		-			9.00 [7.35,	11.02]	1.58	
Zeng X	GAD-7					31.20 [25.90,	37.59]	1.59	
Moyer CA	PRAS					5.60 [4.76,	6.59]	1.60	
Shangguan F	GAD-7					21.50 [18.74,	24.67]	1.61	
Heterogeneity: $\tau^2 = 0$.43, I ² = 95.79%, H ² = 23.73					26.02 [19.36,	34.96]		
Test of $\theta_i = \theta_i$: Q(20)	= 542.19, p = 0.00			•					
		2	8	32	128				

Random-effects REML model Sorted by: meta weight

Fig. 14 A forest plot showing the subgroup analysis for anxiety symptoms in the 3rd trimester. Legend. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Covid-19 pandemic reported up to 70% of pregnant women suffering from stress during the pandemic [8]. Being pregnant and giving birth are known triggers for women to develop anxiety and depression and is a known risk factor for exacerbations or decline in preexisting mental ill-health [5, 6]. Other possible reasons for the increase in mental ill-health in women during pregnancy or after childbirth may be because of the massive clinical changes that took place regarding how women could access maternity care during the Covid-19 pandemic. As pregnant women were at higher risk of severe illness if infected with SARS-CoV-2, they advised to be stringent with public health measures such as social distancing and self-isolation to lower their risk of COVID-19 exposure. This led to the rapid implementation of virtual access to antenatal care in order to minimising the need for travel to antenatal clinics and in-person contact with healthcare staff. Antenatal care changed immediately from face-to-face consultations to telephone or video consultation. Birth partners were limited in number, with visiting hours for partners restricted resulting in less emotional and psychological support for women during labour and after childbirth on the postnatal wards. Furthermore, once the Covid-19 vaccination was developed, there was uncertainty regarding the effectiveness and safety of the vaccine for pregnant women, which may also have contributed to and exacerbated stress and anxiety.

Author	Measure					Prevalen with 95%	ce Cl	Weight (%)
postpartum								
Nurrizka RH	DASS21-A			-	_	50.00 [27.69,	90.29]	1.28
Zeng X	GAD-7					31.19 [20.80,	46.77]	1.45
Provenzi L	STAI-Y					25.20 [17.69,	35.89]	1.49
Janevic T	GAD-7		-	-		16.22 [11.41,	23.07]	1.49
Molgora S	STAI-S			-	F	57.70 [43.14,	77.18]	1.53
Molgora S	STAI-T			-		46.20 [34.63,	61.64]	1.53
Mirzaei N	HADS-A			-		42.29 [32.01,	55.87]	1.54
Thompson KA	DOCS			-		35.80 [27.37,	46.82]	1.54
Sakalidis VS	PASS					41.60 [32.06,	53.98]	1.55
Suárez-Rico BV	STAI-T			-		46.10 [36.64,	58.00]	1.57
Liu CH	GAD-7					24.36 [20.30,	29.23]	1.59
Fallon V	STAI-S					61.00 [51.87,	71.74]	1.60
Mollard E	N/A					33.80 [29.41,	38.85]	1.61
Nomura R	BAI					23.50 [20.98,	26.32]	1.62
Obata S	K6					13.90 [12.53,	15.42]	1.62
Ceulemans M	GAD-7					14.00 [12.72,	15.41]	1.62
Ceulemans M	GAD-7					41.80 [39.41,	44.34]	1.63
Heterogeneity: T ² =	0.21, I ² = 97.06%, H ² = 33.96					32.09 [25.55,	40.30]	
Test of $\theta_i = \theta_j$: Q(16)	6) = 740.78, p = 0.00			•				
		2	8	32	128			

Random-effects REML model Sorted by: _meta_weight

Fig. 15 A forest plot showing the subgroup analysis for anxiety symptoms postpartum. Legend. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Random-effects REML model Sorted by: _meta_weight

Fig. 16 A forest plot showing the overall subgroup analysis for anxiety symptoms. Legend First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

						Prevalen	Weight	
Author	Measure					with 95%	CI	(%)
postpartum								
Shayganfard M	PSS-14					55.00 [28.78,	105.11]	5.79
Davis JA	PSS-10					38.09 [27.05,	53.64]	6.20
Janevic T	PSS-10					29.60 [22.20,	39.46]	6.25
An R	CPSS					45.50 [34.66,	59.74]	6.26
Sakalidis VS	PSS					62.60 [48.01,	81.62]	6.27
Suárez-Rico BV	PSS-10					68.90 [53.80,	88.24]	6.28
Heterogeneity: T ²	= 0.09, I ² = 78.57%, H ² = 4.67				•	47.81 [36.32,	62.94]	
Test of $\theta_i = \theta_j$: Q(§	5) = 24.86, p = 0.00							
trimester 1								
Xu K	CPSS					68.75 [23.89,	197.87]	5.02
Zhang Y	IES					56.80 [43.68,	73.86]	6.27
Jiang H	CPSS-14					87.50 [68.67,	111.50]	6.28
Heterogeneity: T ²	= 0.06, I ² = 64.65%, H ² = 2.83				•	70.58 [49.46,	100.72]	
Test of $\theta_i = \theta_j$: Q(2)	2) = 5.62, p = 0.06							
trimester 2								
Maharlouei N	DASS21-S			-		0.50 [0.06,	3.88]	3.18
Zhang Y	IES					79.50 [57.31,	110.29]	6.21
Xu K	CPSS					41.20 [31.42,	54.02]	6.26
Jiang H	CPSS-14					89.20 [70.30,	113.19]	6.29
Heterogeneity: τ^2	= 4.68, I ² = 99.37%, H ² = 159.99		-			23.37 [2.65,	205.88]	
Test of $\theta_i = \theta_j$: Q(3)	3) = 40.80, p = 0.00							
trimester 3								
Maharlouei N	DASS21-S					1.30 [0.49,	3.42]	5.20
Xu K	CPSS					40.48 [21.86,	74.96]	5.84
Zhang Y	IES				-	63.70 [43.41,	93.47]	6.15
Jiang H	CPSS-14					90.60 [68.42,	119.97]	6.25
Heterogeneity: T ²	= 3.55, I ² = 98.44%, H ² = 64.30			-		24.41 [3.75,	158.88]	
Test of $\theta_i = \theta_j$: Q(3)	8) = 70.18, p = 0.00							
Overall					•	40.94 [24.45,	68.54]	
Heterogeneity: T ²	= 1.09, I ² = 97.51%, H ² = 40.14							
Test of $\theta_i = \theta_j$: Q(1)	16) = 156.58, p = 0.00							
Test of group diffe	rences: $O_{1}(3) = 4.19$ n = 0.24							
1001 of group diffe	101000, wb(0) - 4.10, p - 0.24	1/8	1	ģ	64			
		1/0		0	04			

Random-effects REML model Sorted by: _meta_weight

Fig. 17 A forest plot showing the subgroup analyses for stress symptoms. Legend. The forest plot shows the subgroup analyses results during the 1st, 2nd, and 3rd trimester as well as postpartum and overall. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Author	Measure					P	revalen	CI	Weight(%)
nostnartum	inducaro							0.	(70)
Gluska H	City BiTS	_	_			3 33 [1.96	5 671	7.51
Janevic T	DSM-V		-			9.65 [6.22	14 981	7.72
Molgora S	PPO		1	-		16,70 [11.36	24.551	7.83
Ostacoli I	IFS-R					42 90 [31 46	58 501	7.96
Liu CH	PCL-C			-7		24.17 [20.13	29.011	8.12
Basu A	IES-6			-		45.20 [40.31.	50.691	8.18
Heterogenei	tv: $r^2 = 0.92$, $l^2 = 98.26\%$, $H^2 = 57.32$		-	-		17.48 [8.01.	38.16]	
Test of $\theta_i = 0$	9; Q(5) = 156.15, p = 0.00						0.0.1		
trimester 1									
Kara P	PCL-5				-	— 97.19 [22.57,	418.44]	4.81
Basu A	IES-6					41.10 [36.76,	45.95]	8.18
Heterogenei	ty: τ ² = 0.09, I ² = 24.67%, H ² = 1.33			-		45.87 [26.13,	80.55]	
Test of $\theta_i = \theta_i$	θ _j : Q(1) = 1.33, p = 0.25								
trimester 2					-				
Kara P	PCL-5				-	86.01 [56.58,	130.75]	7.76
Basu A	IES-6					44.00 [40.62,	47.66]	8.20
Heterogenei	ty: τ ² = 0.20, I ² = 89.47%, H ² = 9.49			<		59.53 [30.96,	114.46]	
Test of $\theta_i = \theta_i$	θ _j : Q(1) = 9.49, p = 0.00								
trimester 3									
Ionio C	IES-R			-	-	54.61 [34.66,	86.04]	7.69
Kara P	PCL-5				-	81.80 [56.96,	117.47]	7.87
Basu A	IES-6					42.30 [38.70,	46.23]	8.19
Heterogenei	ty: τ ² = 0.10, I ² = 81.62%, H ² = 5.44			<		55.79 [37.35,	83.33]	
Test of $\theta_i = 0$	θ _j : Q(2) = 12.88, p = 0.00								
Overall				•		32.98 [20.06,	54.22]	
Heterogenei	ty: τ ² = 0.78, l ² = 99.04%, H ² = 103.66								
Test of $\theta_i = 0$	θ _j : Q(12) = 215.16, p = 0.00								
Test of group	p differences: Q _b (3) = 7.38, p = 0.06					_			
		ź	8	32	128				
Random-effect	cts REML model								

Sorted by: _meta_se

Fig. 18 A forest plot showing the subgroup analyses for PTSD symptoms. Legend. The forest plot shows the subgroup analyses results during the 1st, 2nd, and 3rd trimester as well as postpartum and overall. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Author	Measure		Prevalence with 95% Cl	Weight(%) (%)
postpartum				
Wang J	ISI	_	4.30 [1.61, 11.47]	6.02
Zeng X	DSM-IV		9.17 [4.78, 17.57]	7.51
Miranda AR M	MD ISI		46.00 [36.73, 57.62]	9.07
Heterogeneit	y: r ² = 1.39, l ² = 94.13%, H ² = 17.03		12.96 [3.23, 51.95]	
Test of $\theta_i = \theta_i$;: Q(2) = 39.49, p = 0.00			
trimester 1				
Xu K	PSQI		50.00 [18.77, 133.22]	6.02
Çolak S	PSQI	_	18.43 [9.08, 37.41]	7.25
Wang J	ISI		22.30 [18.06, 27.53]	9.10
Heterogeneit	y: τ ² = 0.00, I ² = 0.00%, H ² = 1.00	•	22.71 [18.63, 27.67]	
Test of $\theta_i = \theta_i$;: Q(2) = 2.85, p = 0.24			
trimester 2				
Çolak S	PSQI		72.03 [37.57, 138.11]	7.51
Xu K	PSQI	-	33.80 [25.50, 44.81]	8.93
Wang J	ISI		22.70 [18.44, 27.94]	9.11
Heterogeneit	y: τ ² = 0.25, I ² = 90.53%, H ² = 10.56	-	35.76 [19.37, 66.02]	
Test of $\theta_i = \theta_i$; Q(2) = 13.72, p = 0.00			
trimester 3				
Çolak S	PSQI		- 97.50 [17.38, 546.89]	3.45
Xu K	PSQI		52.40 [28.60, 96.01]	7.71
Zeng X	DSM-IV		17.54 [13.98, 22.01]	9.06
Wang J	ISI		50.60 [45.03, 56.86]	9.26
Heterogeneit	y: τ ² = 0.36, l ² = 94.33%, H ² = 17.65	-	39.18 [19.94, 76.98]	
Test of $\theta_i = \theta_i$; Q(3) = 67.92, p = 0.00			
Overall		•	28.13 [18.79, 42.12]	
Heterogeneit	y: τ ² = 0.45, I ² = 95.40%, H ² = 21.72			
Test of $\theta_i = \theta$;: Q(12) = 158.86, p = 0.00			
Test of group	differences: $Q_b(3) = 4.69$, p = 0.20			
Random-effect	ts REML model	z 8 32 128 5	512	

Sorted by: _meta_se

Fig. 19 A forest plot showing the subgroup analyses for sleep disorder symptoms. Legend. The forest plot shows the subgroup analyses results for sleep disorder symptoms during the 1st, 2nd, and 3rd trimester as well as postpartum and overall. First author and outcomes measures have been included. Prevalence rate with confidence internal and weighting of results have been shown

Fig. 20 Funnel plot of depressive symptoms

Fig. 21 Funnel plot of anxiety symptoms

Fig. 22 Funnel plot of stress symptoms

Fig. 23 Funnel plot of PTSD symptoms

Fig. 24 Funnel plot of sleep disorders symptoms

Fig. 27 *P*-value for residual selection bias of stress symptoms

Probability of publishing the trial with largest se

Fig. 29 *P*-value for residual selection bias of sleep disorders symptoms

Outcome N of studies <i>p</i> -value of Egger	symptoms		
test	Outcome	N of studies	<i>p</i> -value of Egger test

Table 5 P-value of Egger Test for the five mental health

Depression	64	0.0256*
Anxiety	82	0.256
Stress	20	0.069
PTSD	7	0.742
Sleep disorders	8	0.998

This table shows mental health outcomes, number of studies and test results for the Eggers test

Note: (*): p < 0.05 indicates significance

 Table 4
 Summary of sensitivity analysis

Outcome	N of study	Model	Probability of publishing study with largest standard error	Proportion (%)	lower (%)	upper (%)	<i>p</i> -value for differences between two conclusions
	_						
Depression	64	copas selection model	67.84%	27.11	24.32	30.22	0.1108
		random effects model		24.91	21.37	29.02	
Anxiety	82	copas selection model	100.00%	32.88	29.08	37.18	0.638
		random effects model		32.88	29.05	37.21	
Sleep disorders	8	copas selection model	59.49%	27.11	14.94	49.21	0.1042
		random effects model		24.38	11.89	49.95	

This table outlines mental health outcome, number of studies and model used to check publishing biases. Statistical analysis relevant to the publication biases have also been reported

Recommendations

All women should be risk assessed for maternal mental health at their initial visit with antenatal services and screened at every contact during pregnancy and after childbirth. All healthcare systems need to invest in perinatal mental health services, delivered from a multi-disciplinary team including mental health nurses, specialist midwives, obstetricians with specialist interest in mental health, and perinatal psychologists and psychiatrists. Maternity mental health services should be delivered in a way that meets the specific needs of the individual patient, including faceto-face consultations, telephone calls and/or video consultations. Up to date information regarding the impact of Covid-19 on maternity services needs to be available and accessible for women during pregnancy and after childbirth (e.g., through social media campaigns or hospital websites). Learning from this data, considerations of the special needs of the pregnant and postnatal mothers should be imperative in the implementation of strategies improve preparedness of the health service in future pandemics.

Conclusion

This study highlights that maternity mental ill-health was common during the Covid-19 pandemic and highlights the need to understand the complexity of factors associated with maternal mental health. Maternity mental health services need further investment and prioritisation with clear effective referral pathways and support for women who report mental health concerns during and after pregnancy. Further research is required to explore how to best provide care in a way that meets the specific needs of each woman, across different healthcare systems.

Abbreviations

SARS-CoV	Severe Acute Respiratory Syndrome Coronavirus
MERS	Middle Eastern Respiratory Syndrome
SARS-Cov-2	Severe Acute Respiratory Syndrome Coronavirus 2
COVID-19	Coronavirus Disease 2019
PTSD	Post Traumatic Stress Disorder
UK	United Kingdom
PRISMA	Preferred Reporting Items for Systematic Reviews and
	Meta-analyses
RoB	Risk of bias
CI	Confidence interval
EPDS	Edinburgh Postnatal Depression Scale
PHQ-9	Patient Health Questionnaire 9-item
HADS-D	Hospital Anxiety and Depression Scale
STAI	State-Trait Anxiety Inventory
GAD-7	General Anxiety Disorder 7-item
SAS	Self-rating Anxiety Scale
PSS	Perceived Stress Scale
DASS21-S	21-item Depression Anxiety and Stress Scale
PCI-5	DSM-V Post-Traumatic Stress Disorder Checklist
IES	Impact of Events Scale
ISI	Insomnia Severity Index
PSQI	Pittsburgh Sleep Quality Index

Acknowledgements

The authors acknowledge support from Southern Health NHS Foundation Trust.

Code availability

Not applicable.

Authors' contributions

GD and PP developed the systematic review protocol and embedded this within the EPIC project's evidence synthesis phase. GD, MC, JQS, PP and DKH wrote the first draft of the manuscript. GD, HC, TP and PP shared database searches, study selection and extraction for analysis. YZ, JS and GD conducted the analysis. All authors critically appraised and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding

The work presented in this manuscript was not funded by any specific grants. However, the authors GD and PP are supported by the Sponsor Southern Health NHS Foundation Trust.

Availability of data and materials

All data used within this study has been publicly available. The authors will consider sharing the dataset gathered upon request.

Declarations

Ethics approval consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

PP has received research grant from Novo Nordisk, and other, educational from Queen Mary University of London, other from John Wiley & Sons, other from Otsuka, outside the submitted work. SR reports other from Janssen, Lundbeck and Otsuka outside the submitted work. All other authors report no conflict of interest. The views expressed are those of the authors and not necessarily those of the NHS, the National Institute for Health Research, the Department of Health and Social Care or the Academic institutions.

Author details

¹ Nuffield Department of Primary Health Care Sciences, Uuniversity of Oxford, Oxford, UK. ²Southern Health NHS Foundation Trust, Research and Innovation Department, Clinical Trials Facility, Tom Rudd Unit Moorgreen Hospital, Botley Road, West End, Southampton SO30 3JB, UK. ³Liverpool Women's NHS Foundation Trust, Liverpool, UK. ⁴University College London, London, UK. ⁵Oxford University Hospitals NHS Foundation Trust, Oxford, UK. ⁶Southern University of Science and Technology, Shenzhen, China. ⁷University College London Hospitals NHS Foundation Trust, London, UK. ⁸National Center for Applied Mathematics, Shenzhen, China. ⁹University of Liverpool, UK. ¹⁰School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.

Received: 25 July 2022 Accepted: 24 November 2022 Published online: 28 January 2023

References

- Pfefferbaum B, North CS. Mental Health and the Covid-19 Pandemic. N Engl J Med. 2020;6(383):510–2 Available from: 10.1056/nejmp2008017; Aug.
- Galea S, Merchant RM, Lurie N. The mental health consequences of COVID-19 and physical distancing: the need for prevention and early intervention. JAMA Intern Med. 2020;1(180):817–8 Available from: 10.1001/jamainternmed.2020.1562; Jun.
- Loades ME, Chatburn E, Higson-Sweeney N, Reynolds S, Shafran R, Brigden A, et al. Rapid systematic review: the impact of social isolation and loneliness on the mental health of children and adolescents

in the context of COVID-19. J Am Acad Child Adolesc Psychiatry 2020; 59:1218–1239.e3. Available from: https://doi.org/10.1016/j.jaac.2020. 05.009.

- Royal College of Obstetricians and Gynaecologists. Restoration and Recovery: Priorities for Obstetrics and Gynaecology [Internet]. 2021 April 20.Available from: https://www.rcog.org.uk/globalassets/docum ents/guidelines/2020-05-29-restoration-and-recovery%2D%2D-prior ities-for-obstetrics-and-gynaecology.pdf
- Woody CA, Ferrari AJ, Siskind DJ, Whiteford HA, Harris MG. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. J Affect Disord. 2017;219:86–92 Available from: https://doi.org/10.1016/j.jad.2017.05.003.
- Dennis C-L, Falah-Hassani K, Shiri R. Prevalence of antenatal and postnatal anxiety: systematic review and meta-analysis. Br J Psychiatry. 2017;210:315–23. https://doi.org/10.1192/bjp.bp.116.187179.
- Harville E, Xiong X, Buekens P. Disasters and perinatal health:a systematic review. Obstet Gynecol Surv. 2010;65:713–28. https://doi.org/10. 1097/ogx.0b013e31820eddbe.
- Yan H, Ding Y, Guo W. Mental health of pregnant and postpartum women during the coronavirus disease 2019 pandemic: a systematic review and Meta-analysis. Front Psychol. 2020;11:617001. https://doi. org/10.3389/fpsyg.2020.617001.
- Wu Y, Zhang C, Liu H, Duan C, Li C, Fan J, et al. Perinatal depressive and anxiety symptoms of pregnant women during the coronavirus disease 2019 outbreak in China. Am J Obstet Gynecol. 2020;223(2):240.e1–9. https://doi.org/10.1016/j.ajog.2020.05.009 Epub 2020 May 11. PMID: 32437665; PMCID: PMC7211756.
- Durankuş F, Aksu E. Effects of the COVID-19 pandemic on anxiety and depressive symptoms in pregnant women: a preliminary study. J Matern Fetal Neonatal Med. 2022;35(2):205–11. https://doi.org/10.1080/ 14767058.2020.1763946 Epub 2020 May 18. PMID: 32419558.
- Moyer CA, Compton SD, Kaselitz E, Muzik M. Pregnancy-related anxiety during COVID-19: a nationwide survey of 2740 pregnant women. Arch Womens Ment Health. 2020;23(6):757–65. https://doi.org/10.1007/s00737-020-01073-5 Epub 2020 Sep 29. PMID: 32989598; PMCID: PMC7522009.
- Zanardo V, Manghina V, Giliberti L, Vettore M, Severino L, Straface G. Psychological impact of COVID-19 quarantine measures in northeastern ltaly on mothers in the immediate postpartum period. Int J Gynaecol Obstet. 2020;150(2):184–8. https://doi.org/10.1002/ijgo.13249 Epub 2020 Jun 16. PMID: 32474910; PMCID: PMC9087548.
- López-Morales H, Del Valle MV, Canet-Juric L, Andrés ML, Galli JI, Poó F, et al. Mental health of pregnant women during the COVID-19 pandemic: a longitudinal study. Psychiatry Res. 2021;295:113567. https:// doi.org/10.1016/j.psychres.2020.113567 Epub 2020 Nov 11. PMID: 33213933; PMCID: PMC7657008.
- Salehi L, Rahimzadeh M, Molaei E, Zaheri H, Esmaelzadeh-Saeieh S. The relationship among fear and anxiety of COVID-19, pregnancy experience, and mental health disorder in pregnant women: A structural equation model. Brain Behav. 2020;10(11):e01835. https:// doi.org/10.1002/brb3.1835 Epub 2020 Sep 23. PMID: 32969190; PMCID: PMC7536966.
- Pariente G, Wissotzky Broder O, Sheiner E, Lanxner Battat T, Mazor E, Yaniv Salem S, et al. Risk for probable post-partum depression among women during the COVID-19 pandemic. Arch Womens Ment Health. 2020;23(6):767–73. https://doi.org/10.1007/s00737-020-01075-3 Epub 2020 Oct 12. PMID: 33047207; PMCID: PMC7549733.
- Ostacoli L, Cosma S, Bevilacqua F, Berchialla P, Bovetti M, Carosso AR, et al. Psychosocial factors associated with postpartum psychological distress during the Covid-19 pandemic: a cross-sectional study. BMC Pregnancy Childbirth. 2020;20(1):703. https://doi.org/10.1186/s12884-020-03399-5 PMID: 33208115; PMCID: PMC7671935.
- Ravaldi C, Wilson A, Ricca V, Homer C, Vannacci A. Pregnant women voice their concerns and birth expectations during the COVID-19 pandemic in Italy. Women Birth. 2021;34(4):335–343: https://doi.org/10. 1016/j.wombi.2020.07.002. Epub 2020 Jul 13. PMID: 32684343; PMCID: PMC7357495.
- Zhou Y, Shi H, Liu Z, Peng S, Wang R, Qi L, et al. The prevalence of psychiatric symptoms of pregnant and non-pregnant women during the COVID-19 epidemic. Transl Psychiatry. 2020;10(1):319. https://doi.org/ 10.1038/s41398-020-01006-x PMID: 32950999; PMCID: PMC7501755.

- Kahyaoglu Sut H, Kucukkaya B. Anxiety, depression, and related factors in pregnant women during the COVID-19 pandemic in Turkey: A web-based cross-sectional study. Perspect Psychiatr Care. 2021;57(2):860–8. https://doi.org/10.1111/ppc.12627 Epub 2020 Sep 28. PMID: 32989798; PMCID: PMC7537279.
- Hui PW, Ma G, Seto MTY, Cheung KW. Effect of COVID-19 on delivery plans and postnatal depression scores of pregnant women. Hong Kong Med J. 2021;27(2):113–7. https://doi.org/10.12809/hkmj208774 Epub 2020 Nov 5. PMID: 33154187.
- Oskovi-Kaplan ZA, Buyuk GN, Ozgu-Erdinc AS, Keskin HL, Ozbas A, Moraloglu TO. The Effect of COVID-19 Pandemic and Social Restrictions on Depression Rates and Maternal Attachment in Immediate Postpartum Women: a Preliminary Study. Psychiatr Q. 2021;92(2):675– 82. https://doi.org/10.1007/s11126-020-09843-1 Epub 2020 Sep 4. PMID: 32886272; PMCID: PMC7472395.
- Sinaci S, Ozden Tokalioglu E, Ocal D, Atalay A, Yilmaz G, Keskin HL, et al. Does having a high-risk pregnancy influence anxiety level during the COVID-19 pandemic? Eur J Obstet Gynecol Reprod Biol. 2020;255:190–6. https://doi.org/10.1016/j.ejogrb.2020.10.055 Epub 2020 Oct 24. PMID: 33147531; PMCID: PMC7585497.
- Dong H, Hu R, Lu C, Huang D, Cui D, Huang G, et al. Investigation on the mental health status of pregnant women in China during the Pandemic of COVID-19. Arch Gynecol Obstet. 2021;303(2):463–9. https://doi.org/ 10.1007/s00404-020-05805-x Epub 2020 Oct 3. PMID: 33009997; PMCID: PMC7532741.
- Hocaoglu M, Ayaz R, Gunay T, Akin E, Turgut A, Karateke A. Anxiety and post-traumatic stress disorder symptoms in pregnant women during the COVID-19 Pandemic's delay phase. Psychiatr Danub. 2020;32(3-4):521–6. https://doi.org/10.24869/psyd.2020.521 PMID: 33370762. Autumn-Winter.
- Liang P, Wang Y, Shi S, Liu Y, Xiong R. Prevalence and factors associated with postpartum depression during the COVID-19 pandemic among women in Guangzhou, China: a cross-sectional study. BMC Psychiatry. 2020;20(1):557. https://doi.org/10.1186/s12888-020-02969-3 PMID: 33238927; PMCID: PMC7686811.
- Preis H, Mahaffey B, Heiselman C, Lobel M. Vulnerability and resilience to pandemic-related stress among U.S. women pregnant at the start of the COVID-19 pandemic. Soc Sci Med. 2020;266:113348. https:// doi.org/10.1016/j.socscimed.2020.113348 Epub 2020 Sep 6. PMID: 32927382; PMCID: PMC7474815.
- Yue C, Liu C, Wang J, Zhang M, Wu H, Li C, et al. Association between social support and anxiety among pregnant women in the third trimester during the coronavirus disease 2019 (COVID-19) epidemic in Qingdao, China: The mediating effect of risk perception. Int J Soc Psychiatry. 2021;67(2):120–7. https://doi.org/10.1177/0020764020941567 Epub 2020 Jul 9. PMID: 32643510; PMCID: PMC7348553.
- Maharlouei N, Asadi N, Bazrafshan K, Roozmeh S, Rezaianzadeh A, Zahed-Roozegar MH, et al. Knowledge and attitude regarding COVID-19 among pregnant women in Southwestern Iran in the early period of its outbreak: a cross-sectional study. Am J Trop Med Hyg. 2020;103(6):2368–75. https://doi.org/10.4269/ajtmh.20-0608 Epub 2020 Oct 27. PMID: 33124530; PMCID: PMC7695057.
- Medina-Jimenez V, Bermudez-Rojas ML, Murillo-Bargas H, Rivera-Camarillo AC, Muñoz-Acosta J, Ramirez-Abarca TG, et al. The impact of the COVID-19 pandemic on depression and stress levels in pregnant women: a national survey during the COVID-19 pandemic in Mexico. J Matern Fetal Neonatal Med. 2020;26:1–3. https://doi.org/10.1080/14767 058.2020.1851675 Epub ahead of print. PMID: 33243043.
- Ceulemans M, Hompes T, Foulon V. Mental health status of pregnant and breastfeeding women during the COVID-19 pandemic: a call for action. Int J Gynaecol Obstet. 2020;151(1):146–7. https://doi.org/10. 1002/ijgo.13295. Epub 2020 Jul 23. PMID: 32620037. Milne SJ, Corbett GA, Hehir MP, Lindow SW, Mohan S, Reagu S, et al. Effects of isolation on mood and relationships in pregnant women during the covid-19 pandemic. Eur J Obstet Gynecol Reprod Biol. 2020;252:610–1. https:// doi.org/10.1016/j.ejogrb.2020.06.009 Epub 2020 Jun 8. PMID: 32616415; PMCID: PMC7278652.
- Matsushima M, Horiguchi H. The COVID-19 pandemic and mental well-being of pregnant women in Japan: need for economic and social policy interventions. Disaster Med Public Health Prep.

2022;16(2):449–54. https://doi.org/10.1017/dmp.2020.334 Epub 2020 Sep 10. PMID: 32907687; PMCID: PMC7642494.

- Ceulemans M, Foulon V, Ngo E, Panchaud A, Winterfeld U, Pomar L, et al. Mental health status of pregnant and breastfeeding women during the COVID-19 pandemic-a multinational cross-sectional study. Acta Obstet Gynecol Scand. 2021;100(7):1219–29. https://doi.org/ 10.1111/aogs.14092 Epub 2021 Feb 13. PMID: 33475148; PMCID: PMC8014496.
- Gildner TE, Laugier EJ, Thayer ZM. Exercise routine change is associated with prenatal depression scores during the COVID-19 pandemic among pregnant women across the United States. PLoS One. 2020;15(12):e0243188. https://doi.org/10.1371/journal.pone.0243188 PMID: 33347484; PMCID: PMC7751871.
- 34. Shayganfard M, Mahdavi F, Haghighi M, Sadeghi Bahmani D, Brand S. Health anxiety predicts postponing or cancelling routine medical health care appointments among women in perinatal stage during the Covid-19 lockdown. Int J Environ Res Public Health. 2020;17(21):8272. https://doi.org/10.3390/ijerph17218272 PMID: 33182388; PMCID: PMC7664877.
- Yassa M, Yassa A, Yirmibeş C, Birol P, Ünlü UG, Tekin AB, et al. Anxiety levels and obsessive compulsion symptoms of pregnant women during the COVID-19 pandemic. Turk J Obstet Gynecol. 2020;17(3):155– 60. https://doi.org/10.4274/tjod.galenos.2020.91455 Epub 2020 Oct 2. PMID: 33072418; PMCID: PMC7538825.
- Silverman ME, Burgos L, Rodriguez ZI, Afzal O, Kalishman A, Callipari F, et al. Postpartum mood among universally screened high and low socioeconomic status patients during COVID-19 social restrictions in new York City. Sci Rep. 2020;10(1):22380. https://doi.org/10.1038/ s41598-020-79564-9 PMID: 33361797; PMCID: PMC7759569.
- Muhaidat N, Fram K, Thekrallah F, Qatawneh A, Al-Btoush A. Pregnancy during COVID-19 outbreak: the impact of lockdown in a middleincome country on antenatal healthcare and wellbeing. Int J Women's Health. 2020;16(12):1065–73. https://doi.org/10.2147/IJWH.S280342 PMID: 33235516; PMCID: PMC7678687.
- Thayer ZM, Gildner TE. COVID-19-related financial stress associated with higher likelihood of depression among pregnant women living in the United States. Am J Hum Biol. 2021;33(3):e23508. https://doi. org/10.1002/ajhb.23508 Epub 2020 Sep 22. PMID: 32964542; PMCID: PMC7536992.
- Jiang H, Jin L, Qian X, Xiong X, La X, Chen W, Yang X, Yang F, Zhang X, Abudukelimu N, Li X, Xie Z, Zhu X, Zhang X, Zhang L, Wang L, Li L, Li M. Maternal Mental Health Status and Approaches for Accessing Antenatal Care Information During the COVID-19 Epidemic in China: Cross-Sectional Study J Med Internet Res 2021;23(1):e18722. https://www.jmir. org/2021/1/e18722. https://doi.org/10.2196/18722.
- Zhang Y, Ma ZF. Psychological responses and lifestyle changes among pregnant women with respect to the early stages of COVID-19 pandemic. Int J Soc Psychiatry. 2021;67(4):344–50. https://doi.org/10. 1177/0020764020952116 Epub 2020 Aug 20. PMID: 32815434; PMCID: PMC8191160.
- Mayeur A, Binois O, Gallot V, Hesters L, Benoit A, Oppenheimer A, et al. First follow-up of art pregnancies in the context of the COVID-19 outbreak. Eur J Obstet Gynecol Reprod Biol. 2020, 253:71–5. https://doi.org/10.1016/j. ejogrb.2020.07.050 Epub 2020 Jul 31. PMID: 32805629; PMCID: PMC7836367.
- Lin W, Wu B, Chen B, Lai G, Huang S, Li S, et al. Sleep conditions associate with anxiety and depression symptoms among pregnant women during the epidemic of COVID-19 in Shenzhen. J Affect Disord. 2021;15(281):567–73. https://doi.org/10.1016/j.jad.2020.11.114 Epub 2020 Nov 26. PMID: 33261931; PMCID: PMC7688420.
- Zhang CJP, Wu H, He Z, Chan NK, Huang J, Wang H, et al. Psychobehavioral responses, post-traumatic stress and depression in pregnancy during the early phase of COVID-19 outbreak. Psychiatr Res Clin Pract. 2020;24. https://doi.org/10.1176/appi.prcp.20200019 Epub ahead of print. PMID: 34172982; PMCID: PMC7753825.
- 44. Yang X, Song B, Wu A, Mo PKH, Di J, Wang Q, et al. Social, cognitive, and eHealth mechanisms of COVID-19-related lockdown and mandatory quarantine that potentially affect the mental health of pregnant women in China: cross-sectional survey study. J Med Internet Res. 2021;23(1):e24495. https://doi.org/10.2196/24495 PMID: 33302251; PMCID: PMC7836909.

- Khamees RE, Taha OT, Ali TYM. Anxiety and depression during pregnancy in the era of COVID-19. J Perinat Med. 2021;49(6):674–7. https:// doi.org/10.1515/jpm-2021-0181 PMID: 34062628.
- Lorentz MS, Chagas LB, Perez AV, da Silva Cassol PA, Vettorazzi J, Lubianca JN. Correlation between depressive symptoms and sexual dysfunction in postpartum women during the COVID-19 pandemic. Eur J Obstet Gynecol Reprod Biol. 2021;258:162–7. https://doi.org/10. 1016/j.ejogrb.2020.12.039 Epub 2020 Dec 29. PMID: 33429166.
- Silverman ME, Medeiros C, Burgos L. Early pregnancy mood before and during COVID-19 community restrictions among women of low socioeconomic status in New York City: a preliminary study. Arch Womens Ment Health. 2020;23(6):779–82. https://doi.org/10.1007/s00737-020-01061-9 Epub 2020 Aug 25. PMID: 32844329; PMCID: PMC7447087.
- Akgor U, Fadiloglu E, Soyak B, Unal C, Cagan M, Temiz BE, et al. Anxiety, depression and concerns of pregnant women during the COVID-19 pandemic. Arch Gynecol Obstet. 2021;304(1):125–30. https://doi.org/10. 1007/s00404-020-05944-1 Epub 2021 Jan 12. PMID: 33433702; PMCID: PMC7802427.
- Shahid A, Javed A, Rehman S, Tariq R, Ikram M, Suhail M. Evaluation of psychological impact, depression, and anxiety among pregnant women during the COVID-19 pandemic in Lahore, Pakistan. Int J Gynaecol Obstet. 2020;151(3):462–5. https://doi.org/10.1002/ijgo.13398 Epub 2020 Oct 17. PMID: 32989756; PMCID: PMC9087781.
- Preis H, Mahaffey B, Heiselman C, Lobel M. Pandemic-related pregnancy stress and anxiety among women pregnant during the coronavirus disease 2019 pandemic. Am J Obstet Gynecol MFM. 2020;2(3):100155. https://doi.org/10.1016/j.ajogmf.2020.100155 Epub 2020 Jun 15. PMID: 32838261; PMCID: PMC7295479.
- Dagklis T, Tsakiridis I, Mamopoulos A, Athanasiadis A, Pearson R, Papazisis G. Impact of the COVID-19 lockdown on antenatal mental health in Greece. Psychiatry Clin Neurosci. 2020;74(11):616–7. https:// doi.org/10.1111/pcn.13135 Epub 2020 Sep 12. PMID: 32827345; PMCID: PMC7461275.
- Ionio C, Gallese M, Fenaroli V, Smorti M, Greco A, Testa I, et al. COVID-19: what about pregnant women during first lockdown in Italy? J Reprod Infant Psychol. 2021;18:1–13. https://doi.org/10.1080/02646838.2021. 1928614 Epub ahead of print. PMID: 34000926.
- Esteban-Gonzalo S, Caballero-Galilea M, González-Pascual JL, Álvaro-Navidad M, Esteban-Gonzalo L. Anxiety and worries among pregnant women during the COVID-19 pandemic: a multilevel analysis. Int J Environ Res Public Health. 2021;18(13):6875. https://doi.org/10.3390/ ijerph18136875 PMID: 34206849; PMCID: PMC8297358.
- Koyucu RG, Karaca PP. The Covid 19 outbreak: maternal mental health and associated factors. Midwifery. 2021;99:103013. https://doi.org/10. 1016/j.midw.2021.103013 Epub 2021 Apr 15. PMID:33957520.
- Overbeck G, Rasmussen IS, Siersma V, Andersen JH, Kragstrup J, Wilson P, et al. Depression and anxiety symptoms in pregnant women in Denmark during COVID-19. Scand J Public Health. 2021;49(7):721–9. https://doi.org/10.1177/14034948211013271 Epub 2021 May 20. PMID: 34011216.
- Kachi Y, Fujiwara T, Eguchi H, Inoue A, Baba S, Ohta H, et al. Association between maternity harassment and depression during pregnancy amid the COVID-19 state of emergency. J Occup Health. 2021 Jan;63(1):e12196. https://doi.org/10.1002/1348-9585.12196 PMID: 33470006; PMCID: PMC7815681.
- Mariño-Narvaez C, Puertas-Gonzalez JA, Romero-Gonzalez B, Peralta-Ramirez MI. Giving birth during the COVID-19 pandemic: The impact on birth satisfaction and postpartum depression. Int J Gynaecol Obstet. 2021;153(1):83–8. https://doi.org/10.1002/ijgo.13565 Epub 2021 Jan 20. PMID: 33368216; PMCID: PMC9087776.
- Liu J, Hung P, Alberg AJ, Hair NL, Whitaker KM, Simon J, et al. Mental health among pregnant women with COVID-19-related stressors and worries in the United States. Birth. 2021;48(4):470–9. https://doi. org/10.1111/birt.12554 Epub 2021 May 19. PMID: 34008216; PMCID: PMC8239832.
- Smith CL, Waters SF, Spellacy D, Burduli E, Brooks O, Carty CL, et al. Substance use and mental health in pregnant women during the COVID-19 pandemic. J Reprod Infant Psychol. 2021:1–14. https://doi.org/10.1080/ 02646838.2021.1916815 Epub ahead of print. PMID: 33870821; PMCID: PMC8963362.

- Cao Y, Liu J, Zhang Y, Li Y, Chen Z, Lu J. Pregnant women's psychological state and influence factors: anxiety, and depression during COVID-19 outbreak. J Perinat Med. 2021;49(6):664–73. https://doi.org/10.1515/ jpm-2020-0541 PMID: 33866693.
- Mappa I, Luviso M, Distefano FA, Carbone L, Maruotti GM, Rizzo G. Women perception of SARS-CoV-2 vaccination during pregnancy and subsequent maternal anxiety: a prospective observational study. J Matern Fetal Neonatal Med. 2021;11:1–4. https://doi.org/10.1080/14767 058.2021.1910672 Epub ahead of print. PMID: 33843419.
- Mehdizadehkashi A, Chaichian S, Haghighi L, Eshraghi N, Bordbar A, Hashemi N, et al. The impact of COVID-19 pandemic on stress and anxiety of non-infected pregnant mothers. J Reprod Infertil. 2021;22(2):125– 32. https://doi.org/10.18502/jri.v22i2.5801 PMID: 34041009; PMCID: PMC8143014.
- 63. Yirmiya K, Yakirevich-Amir N, Preis H, Lotan A, Atzil S, Reuveni I. Women's depressive symptoms during the COVID-19 pandemic: the role of pregnancy. Int J Environ Res Public Health. 2021;18(8):4298. https://doi.org/10.3390/ijerph18084298 PMID: 33919564; PMCID: PMC8072624.
- Xie M, Wang X, Zhang J, Wang Y. Alteration in the psychologic status and family environment of pregnant women before and during the COVID-19 pandemic. Int J Gynaecol Obstet. 2021;153(1):71–5. https:// doi.org/10.1002/ijgo.13575 Epub 2021 Feb 11. PMID: 33403679; PMCID: PMC9087655.
- Ge Y, Shi C, Wu B, Liu Y, Chen L, Deng Y. Anxiety and adaptation of behavior in pregnant Zhuang women during the COVID-19 pandemic: a mixed-mode survey. Risk Manag Healthc Policy. 2021;15(14):1563–73. https://doi.org/10.2147/RMHP.S303835 PMID: 33883960; PMCID: PMC8055250.
- López-Morales H, Del-Valle MV, Andrés ML, Gelpi Trudo R, Canet-Juric L, Urquijo S. Longitudinal study on prenatal depression and anxiety during the COVID-19 pandemic. Arch Womens Ment Health. 2021;24(6):1027–36. https://doi.org/10.1007/s00737-021-01152-1 Epub 2021 Jun 22. PMID: 34159467; PMCID: PMC8219177.
- Puertas-Gonzalez JA, Mariño-Narvaez C, Peralta-Ramirez MI, Romero-Gonzalez B. The psychological impact of the COVID-19 pandemic on pregnant women. Psychiatry Research. 2021;301:113978. https://doi. org/10.1016/j.psychres.2021.113978.
- Çolak S, Gürlek B, Önal Ö, Yılmaz B, Hocaoglu C. The level of depression, anxiety, and sleep quality in pregnancy during coronavirus disease 2019 pandemic. J Obstet Gynaecol Res. 2021;47(8):2666–76. https:// doi.org/10.1111/jog.14872 Epub 2021 Jun 1. PMID: 34062619; PMCID: PMC8242418.
- Xu K, Zhang Y, Zhang Y, Xu Q, Lv L, Zhang J. Mental health among pregnant women under public health interventions during COVID-19 outbreak in Wuhan, China. Psychiatry Res. 2021;301:113977. https://doi. org/10.1016/j.psychres.2021.113977 Epub 2021 May 1. PMID: 34020217; PMCID: PMC8088032.
- Zilver SJM, Broekman BFP, Hendrix YMGA, de Leeuw RA, Mentzel SV, van Pampus MG, et al. Stress, anxiety and depression in 1466 pregnant women during and before the COVID-19 pandemic: a Dutch cohort study. J Psychosom Obstet Gynaecol. 2021;42(2):108–14. https:// doi.org/10.1080/0167482X.2021.1907338 Epub 2021 Apr 26. PMID: 33900872.
- Maharlouei N, Keshavarz P, Salemi N, Lankarani KB. Depression and anxiety among pregnant mothers in the initial stage of the coronavirus disease (COVID-19) pandemic in the southwest of Iran. Reprod Health. 2021;18(1):111. https://doi.org/10.1186/s12978-021-01167-y PMID: 34088329; PMCID: PMC8177264.
- Harrison V, Moulds ML, Jones K. Perceived social support and prenatal wellbeing; The mediating effects of loneliness and repetitive negative thinking on anxiety and depression during the COVID-19 pandemic. Women Birth. 2022;35(3):232–41. https://doi.org/10.1016/j.wombi.2020. 12.014 Epub 2021 Jan 7. PMID: 33422441; PMCID: PMC9051127.
- Saadati N, Afshari P, Boostani H, Beheshtinasab M, Abedi P, Maraghi E. Health anxiety and related factors among pregnant women during the COVID-19 pandemic: a cross-sectional study from Iran. BMC Psychiatry. 2021;21(1):95. https://doi.org/10.1186/s12888-021-03092-7 PMID: 33588794; PMCID: PMC7883951.
- Wang Q, Mo PKH, Song B, Di JL, Zhou FR, Zhao J, et al. Mental health and preventive behaviour of pregnant women in China during the early phase of the COVID-19 period. Infect Dis Poverty. 2021;10(1):37.

https://doi.org/10.1186/s40249-021-00825-4 PMID: 33761984; PMCID: PMC7988630.

- Behmard V, Bahri N, Mohammadzadeh F, Noghabi AD, Bahri N. Relationships between anxiety induced by COVID-19 and perceived social support among Iranian pregnant women. J Psychosom Obstet Gynaecol. 2021:1–8. https://doi.org/10.1080/0167482X.2021.1918671 Epub ahead of print. PMID: 33944674.
- King LS, Feddoes DE, Kirshenbaum JS, Humphreys KL, Gotlib IH. Pregnancy during the pandemic: the impact of COVID-19-related stress on risk for prenatal depression. Psychol Med. 2021:1–11. https://doi.org/ 10.1017/S003329172100132X Epub ahead of print. PMID: 33781354; PMCID: PMC8047399.
- Nurrizka RH, Nurdiantami Y, Makkiyah FA. Psychological outcomes of the COVID-19 pandemic among pregnant women in Indonesia: a crosssectional study. Osong Public Health Res Perspect. 2021;12(2):80–7. https://doi.org/10.24171/j.phrp.2021.12.2.05 Epub 2021 Apr 29. PMID: 33979998; PMCID: PMC8102875.
- Jelly P, Chadha L, Kaur N, Sharma S, Sharma R, Stephen S, et al. Impact of COVID-19 pandemic on the psychological status of pregnant women. Cureus. 2021;13(1):e12875. https://doi.org/10.7759/cureus.12875 PMID: 33633904; PMCID: PMC7898554.
- Wang Q, Song B, Di J, Yang X, Wu A, Lau J, et al. Intentions to seek mental health services during the COVID-19 pandemic among Chinese pregnant women with probable depression or anxiety: cross-sectional, web-based survey study. JMIR Ment Health. 2021;8(2):e24162. https:// doi.org/10.2196/24162 PMID: 33570500; PMCID: PMC7879730.
- Zhang Y, Zhang Y, Deng R, Chen M, Cao R, Chen S, et al. Association of Sleep Duration and Screen Time with Anxiety of pregnant women during the COVID-19 pandemic. Front Psychol. 2021;12:646368. https://doi. org/10.3389/fpsyg.2021.646368 PMID: 33959075; PMCID: PMC8093759.
- Masjoudi M, Aslani A, Seifi M, Khazaeian S, Fathnezhad-Kazemi A. Association between perceived stress, fear and anxiety of COVID 19 with self-care in pregnant women: a cross-sectional study. Psychol Health Med. 2022;27(2):289–300. https://doi.org/10.1080/13548506.2021. 1894344 Epub 2021 Feb 25. PMID: 33632035.
- Shangguan F, Wang R, Quan X, Zhou C, Zhang C, Qian W, et al. Association of Stress-Related Factors with Anxiety among Chinese Pregnant Participants in an online crisis intervention during COVID-19 epidemic. Front Psychol. 2021;12:633765. https://doi.org/10.3389/fpsyg.2021. 633765 PMID: 33995188; PMCID: PMC8119994.
- Tsakiridis I, Dagklis T, Mamopoulos A, Athanasiadis A, Pearson R, Papazisis G. Antenatal depression and anxiety during the COVID-19 pandemic: a cross-sectional study in pregnant women from routine health care contact in Greece. J Perinat Med. 2021;49(6):656–63. https:// doi.org/10.1515/jpm-2020-0473 PMID: 33725757.
- Brik M, Sandonis MA, Fernández S, Suy A, Parramon-Puig G, Maiz N, et al. Psychological impact and social support in pregnant women during lockdown due to SARS-CoV2 pandemic: a cohort study. Acta Obstet Gynecol Scand. 2021;100(6):1026–33. https://doi.org/10.1111/aogs. 14073 Epub 2021 Feb 2. PMID: 33533051; PMCID: PMC8012991.
- Effati-Daryani F, Jahanfar S, Mohammadi A, Zarei S, Mirghafourvand M. The relationship between sexual function and mental health in Iranian pregnant women during the COVID-19 pandemic. BMC Pregnancy Childbirth. 2021;21(1):327. https://doi.org/10.1186/s12884-021-03812-7 PMID: 33902479; PMCID: PMC8072090.
- Boekhorst MGBM, Muskens L, Hulsbosch LP, Van Deun K, Bergink V, Pop VJM, et al. The COVID-19 outbreak increases maternal stress during pregnancy, but not the risk for postpartum depression. Arch Womens Ment Health. 2021;24(6):1037–43. https://doi.org/10.1007/s00737-021-01104-9 Epub 2021 Apr 8. PMID: 33830373; PMCID: PMC8027291.
- An R, Chen X, Wu Y, Liu J, Deng C, Liu Y, et al. A survey of postpartum depression and health care needs among Chinese postpartum women during the pandemic of COVID-19. Arch Psychiatr Nurs. 2021;35(2):172– 7. https://doi.org/10.1016/j.apnu.2021.02.001 Epub 2021 Feb 17. PMID: 33781396; PMCID: PMC7886635.
- Lubián López DM, Butrón Hinojo CA, Arjona Bernal JE, Fasero Laiz M, Alcolea Santiago J, Guerra Vilches V, et al. Resilience and psychological distress in pregnant women during quarantine due to the COVID-19 outbreak in Spain: a multicentre cross-sectional online survey. J Psychosom Obstet Gynaecol. 2021;42(2):115–22. https://doi.org/10.1080/ 0167482X.2021.1896491 Epub 2021 Mar 18. PMID: 33730970.

- Maleki A, Ashtari M, Molaie P, Youseflu S. Influential factors of general anxiety disorder among Iranian pregnant women during the second peak of COVID-19 pandemic. Psychol Health Med. 2022;27(2):421–7. https://doi.org/10.1080/13548506.2021.1934497 Epub 2021 Jun 9. PMID: 34107805.
- Khoury JE, Atkinson L, Bennett T, Jack SM, Gonzalez A. Coping strategies mediate the associations between COVID-19 experiences and mental health outcomes in pregnancy. Arch Womens Ment Health. 2021;24(6):1007–17. https://doi.org/10.1007/s00737-021-01135-2 Epub 2021 Jun 19. PMID: 34145499; PMCID: PMC8213535.
- Suárez-Rico BV, Estrada-Gutierrez G, Sánchez-Martínez M, Perichart-Perera O, Rodríguez-Hernández C, González-Leyva C, et al. Prevalence of depression, anxiety, and perceived stress in postpartum Mexican women during the COVID-19 lockdown. Int J Environ Res Public Health. 2021;18(9):4627. https://doi.org/10.3390/ijerph18094627 PMID: 33925373; PMCID: PMC8123843.
- Korukcu O, Ozkaya M, Boran OF, Bakacak M. Factors associated with antenatal depression during the COVID-19 (SARS-CoV2) pandemic: a cross-sectional study in a cohort of Turkish pregnant women. Perspect Psychiatr Care. 2022;58(1):61–70. https://doi.org/10.1111/ppc.12778 Epub 2021 Mar 26. PMID: 33772802; PMCID: PMC8251216.
- Obata S, Miyagi E, Haruyama Y, Umazume T, Kobashi G, Yoshimi A, et al. Psychological stress among pregnant and puerperal women in Japan during the coronavirus disease 2019 pandemic. J Obstet Gynaecol Res. 2021;47(9):2990–3000. https://doi.org/10.1111/jog.14877 Epub 2021 Jun 16. PMID: 34137109; PMCID: PMC8447435.
- Sakalidis VS, Rea A, Perrella SL, McEachran J, Collis G, Miraudo J, et al. Wellbeing of breastfeeding women in Australia and New Zealand during the COVID-19 pandemic: a cross-sectional study. Nutrients. 2021;13(6):1831. https://doi.org/10.3390/nu13061831 PMID: 34072039; PMCID: PMC8230305.
- Basu A, Kim HH, Basaldua R, Choi KW, Charron L, Kelsall N, et al. A crossnational study of factors associated with women's perinatal mental health and wellbeing during the COVID-19 pandemic. PLoS One. 2021;16(4):e0249780. https://doi.org/10.1371/journal.pone.0249780 PMID: 33882096; PMCID: PMC8059819.
- 96. Kara P, Nazik E, Nazik H, Özer D. Post-traumatic stress disorder and affecting factors in pregnant women in the COVID-19 pandemic. Psychiatr Danub. 2021;33(2):231–9. https://doi.org/10.24869/psyd. 2021.231 PMID: 34185755.
- Fallon V, Davies SM, Silverio SA, Jackson L, De Pascalis L, Harrold JA. Psychosocial experiences of postnatal women during the COVID-19 pandemic. A UK-wide study of prevalence rates and risk factors for clinically relevant depression and anxiety. J Psychiatr Res. 2021;136:157–66. https://doi.org/10.1016/j.jpsychires.2021.01.048 Epub 2021 Feb 2. PMID: 33596462; PMCID: PMC8635302.
- Mo PKH, Fong VWI, Song B, Di J, Wang Q, Wang L. Association of Perceived Threat, negative emotions, and self-efficacy with mental health and personal protective behavior among Chinese pregnant women during the COVID-19 pandemic: cross-sectional survey study. J Med Internet Res. 2021;23(4):e24053. https://doi.org/10.2196/24053 PMID: 33729983; PMCID: PMC8043145.
- Wu F, Lin W, Liu P, Zhang M, Huang S, Chen C, et al. Prevalence and contributory factors of anxiety and depression among pregnant women in the post-pandemic era of COVID-19 in Shenzhen. China J Affect Disord. 2021;291:243–51. https://doi.org/10.1016/j.jad.2021.05.014 Epub 2021 May 18. PMID: 34051531.
- Ding W, Lu J, Zhou Y, Wei W, Zhou Z, Chen M. Knowledge, attitudes, practices, and influencing factors of anxiety among pregnant women in Wuhan during the outbreak of COVID-19: a cross-sectional study. BMC Pregnancy Childbirth. 2021;21(1):80. https://doi.org/10.1186/ s12884-021-03561-7 PMID: 33494723; PMCID: PMC7829651.
- Chrzan-Dętkoś M, Walczak-Kozłowska T, Lipowska M. The need for additional mental health support for women in the postpartum period in the times of epidemic crisis. BMC Pregnancy Childbirth. 2021;21(1):114. https://doi.org/10.1186/s12884-021-03544-8 PMID: 33557768; PMCID: PMC7869073.
- 102. Janevic T, Maru S, Nowlin S, McCarthy K, Bergink V, Stone J, et al. Pandemic birthing: childbirth satisfaction, perceived health care Bias, and postpartum health during the COVID-19 pandemic. Matern Child

Health J. 2021;25(6):860–9. https://doi.org/10.1007/s10995-021-03158-8 Epub 2021 Apr 28. PMID: 33909205; PMCID: PMC8079857.

- Thompson KA, Bardone-Cone AM. 2019-nCOV distress and depressive, anxiety and OCD-type, and eating disorder symptoms among postpartum and control women. Arch Womens Ment Health. 2021;24(4):671– 80. https://doi.org/10.1007/s00737-021-01120-9 Epub 2021 Mar 18. PMID: 33738572; PMCID: PMC7972814.
- Mirzaei N, Jahanian Sadatmahalleh S, Bahri Khomami M, Moini A, Kazemnejad A. Sexual function, mental health, and quality of life under strain of COVID-19 pandemic in Iranian pregnant and lactating women: a comparative cross-sectional study. Health Qual Life Outcomes. 2021;19(1):66. https://doi.org/10.1186/s12955-021-01720-0 PMID: 33648521; PMCID: PMC7919992.
- Hiiragi K, Obata S, Misumi T, Miyagi E, Aoki S. Psychological stress associated with the COVID-19 pandemic in postpartum women in Yokohama, Japan. J Obstet Gynaecol Res. 2021;47(6):2126–30. https:// doi.org/10.1111/jog.14776 Epub 2021 Mar 23. PMID: 33759283; PMCID: PMC8251499.
- 106. McFarland MJ, McFarland CAS, Hill TD, D'Oria R. Postpartum depressive symptoms during the beginning of the COVID-19 pandemic: an examination of population birth data from central New Jersey. Matern Child Health J. 2021;25(3):353–9. https://doi.org/10.1007/s10995-020-03116-w Epub 2021 Jan 25. PMID: 33492587; PMCID: PMC7829096.
- 107. Zhou Y, Wang R, Liu L, Ding T, Huo L, Qi L, et al. The impact of lockdown policy on depressive symptoms among pregnant women in China: mediating effects of internet use and family support. Glob Health Res Policy. 2021;6(1):11. https://doi.org/10.1186/s41256-021-00193-4 PMID: 33771230; PMCID: PMC7994177.
- Gluska H, Mayer Y, Shiffman N, Daher R, Elyasyan L, Elia N, et al. The use of personal protective equipment as an independent factor for developing depressive and post-traumatic stress symptoms in the postpartum period. Eur Psychiatry. 2021;64(1):e34. https://doi.org/10. 1192/j.eurpsy.2021.29 PMID: 33941294; PMCID: PMC8260566.
- 109. Liu CH, Mittal L, Erdei C. COVID-19-related health worries compound the psychiatric distress experienced by families of high-risk infants. J Perinatol. 2021;41(5):1191–5. https://doi.org/10.1038/s41372-021-01000-1 Epub 2021 Mar 3. PMID: 33658613; PMCID: PMC7928184.
- 110. Ramirez Biermann C, Choo MS, Carman K, Siden JY, Minns A, Peahl A. Stay Home, Stay connected: a virtual model for enhanced prenatal support during the COVID-19 pandemic and beyond. Int J Gynaecol Obstet. 2021;153(3):549–50. https://doi.org/10.1002/ijgo.13676 Epub 2021 Mar 28. PMID: 33721330; PMCID: PMC9087658.
- 111. Palalioglu RM, Karadeniz O, Aytok GI, Palalioglu B, Koyan GN, Erbiyik HI, et al. Investigation of awareness and anxiety levels of pregnant women during pandemic process. Ginekol Pol. 2021. https://doi.org/10.5603/ GP.a2021.0087 Epub ahead of print. PMID: 34105744.
- 112. Molgora S, Accordini M. Motherhood in the time of coronavirus: the impact of the pandemic emergency on expectant and postpartum Women's psychological well-being. Front Psychol. 2020;11:567155. https://doi.org/10.3389/fpsyg.2020.567155 PMID: 33192847; PMCID: PMC7649390.
- 113. Patabendige M, Gamage MM, Weerasinghe M, Jayawardane A. Psychological impact of the COVID-19 pandemic among pregnant women in Sri Lanka. Int J Gynaecol Obstet. 2020;151(1):150–3. https://doi.org/10.1002/ ijgo.13335 Epub 2020 Aug 17. PMID: 32731307; PMCID: PMC9087773.
- Mollard E, Wittmaack A. Experiences of women who gave birth in US hospitals during the COVID-19 pandemic. J Patient Exp. 2021;8:2374373520981492. https://doi.org/10.1177/2374373520981492 PMID: 34179360; PMCID: PMC8205382.
- Wang J, Zhou Y, Qian W, Zhou Y, Han R, Liu Z. Maternal insomnia during the COVID-19 pandemic: associations with depression and anxiety. Soc Psychiatry Psychiatr Epidemiol. 2021;56(8):1477–85. https://doi.org/10. 1007/s00127-021-02072-2 Epub 2021 Apr 23. PMID: 33891160; PMCID: PMC8063170.
- 116. Zeng X, Li W, Sun H, Luo X, Garg S, Liu T, et al. Mental health outcomes in perinatal women during the remission phase of COVID-19 in China. Front Psychiatry. 2020;11:571876. https://doi.org/10.3389/fpsyt.2020. 571876 PMID: 33132935; PMCID: PMC7573142.
- 117. Miranda ARMD, Scotta AVMD, PhD CMV, PhD SEA. Triggering of postpartum depression and insomnia with cognitive impairment in

Argentinian women during the pandemic COVID-19 social isolation in relation to reproductive and health factors. Midwifery. 2021;102:103072. https://doi.org/10.1016/j.midw.2021.103072 Epub 2021 Jun 24. PMID: 34218023; PMCID: PMC8437687.

- Nomura R, Tavares I, Ubinha AC, Costa ML, Opperman ML, Brock M, et al. BrAPS-Covid Brazilian anxiety during pregnancy study group In Covid-. impact of the COVID-19 pandemic on maternal anxiety in Brazil. J Clin Med. 2021;10(4):620. https://doi.org/10.3390/jcm10040620 PMID: 33562012; PMCID: PMC7914962.
- 119. Davis JA, Gibson LY, Bear NL, Finlay-Jones AL, Ohan JL, Silva DT, Prescott SL. Can Positive Mindsets Be Protective Against Stress and Isolation Experienced during the COVID-19 Pandemic? A Mixed Methods Approach to Understanding Emotional Health and Wellbeing Needs of Perinatal Women. Int J Environ Res Public Health. 2021;18(13):6958. https://doi.org/10.3390/ijerph18136958.
- 120. Provenzi L, Grumi S, Altieri L, Bensi G, Bertazzoli E, Biasucci G, et al. Prenatal maternal stress during the COVID-19 pandemic and infant regulatory capacity at 3 months: a longitudinal study. Dev Psychopathol. 2021:1–9. https://doi.org/10.1017/S0954579421000766 Epub ahead of print. PMID: 34210369.
- 121. Kotabagi P, Fortune L, Essien S, Nauta M, Yoong W. Anxiety and depression levels among pregnant women with COVID-19. Acta Obstet Gynecol Scand. 2020;99(7):953–4. https://doi.org/10.1111/aogs.13928 Epub 2020 Jun 13. PMID: 32474914; PMCID: PMC7300632.
- 122. Berthelot N, Lemieux R, Garon-Bissonnette J, Drouin-Maziade C, Martel É, Maziade M. Uptrend in distress and psychiatric symptomatology in pregnant women during the coronavirus disease 2019 pandemic. Acta Obstet Gynecol Scand. 2020 Jul;99(7):848–55. https://doi.org/10.1111/ aogs.13925 Epub 2020 Jun 3. PMID: 32449178.
- Corbett GA, Milne SJ, Hehir MP, Lindow SW, O'connell MP. Health anxiety and behavioural changes of pregnant women during the COVID-19 pandemic. Eur J Obstet Gynecol Reprod Biol. 2020;249:96–7. https://doi. org/10.1016/j.ejogrb.2020.04.022 Epub 2020 Apr 13. PMID: 32317197; PMCID.
- Farrell T, Reagu S, Mohan S, Elmidany R, Qaddoura F, Ahmed EE, et al. The impact of the COVID-19 pandemic on the perinatal mental health of women. J Perinat Med. 2020;48(9):971–6. https://doi.org/10.1515/ jpm-2020-0415 PMID: 32975206.
- 125. Stepowicz A, Wencka B, Bieńkiewicz J, Horzelski W, Grzesiak M. Stress and anxiety levels in pregnant and post-partum women during the COVID-19 pandemic. Int J Environ Res Public Health. 2020;17(24):9450. https://doi.org/10.3390/ijerph17249450 PMID: 33348568; PMCID: PMC7766953.
- 126. Mayopoulos GA, Ein-Dor T, Dishy GA, Nandru R, Chan SJ, Hanley LE, et al. COVID-19 is associated with traumatic childbirth and subsequent mother-infant bonding problems. J Affect Disord. 2021;282:122–5. https://doi.org/10.1016/j.jad.2020.12.101 Epub 2020 Dec 28. PMID: 33412491; PMCID: PMC7889625.
- Liu CH, Erdei C, Mittal L. Risk factors for depression, anxiety, and PTSD symptoms in perinatal women during the COVID-19 pandemic. Psychiatry Res. 2021;295:113552. https://doi.org/10.1016/j.psychres.2020.
 113552 Epub 2020 Nov 4. PMID: 33229122; PMCID: PMC7904099.
- 128. Farewell CV, Jewell J, Walls J, Leiferman JA. A mixed-methods pilot study of perinatal risk and resilience during COVID-19. J Prim Care Community Health. 2020;11:2150132720944074. https://doi.org/10.1177/2150132720944074 PMID: 32674654.
- Haruna M, Nishi D. Perinatal mental health and COVID-19 in Japan. Psychiatry Clin Neurosci. 2020;74(9):502–3. https://doi.org/10.1111/pcn. 13091 Epub 2020 Jul 17. PMID: 32579265; PMCID: PMC7362146.
- Bender WR, Srinivas S, Coutifaris P, Acker A, Hirshberg A. The psychological experience of obstetric patients and health care workers after implementation of universal SARS-CoV-2 testing. Am J Perinatol. 2020;37(12):1271–9. https://doi.org/10.1055/s-0040-1715505 Epub 2020 Aug 5. PMID: 32757185; PMCID: PMC7645811.
- Aksoy Derya Y, Altiparmak S, AkÇa E, GÖkbulut N, Yilmaz AN. Pregnancy and birth planning during COVID-19: The effects of tele-education offered to pregnant women on prenatal distress and pregnancyrelated anxiety. Midwifery. 2021;92:102877. https://doi.org/10.1016/j. midw.2020.102877 Epub 2020 Oct 30. Erratum in: Midwifery. 2021 Apr;95:102932. PMID: 33157497; PMCID: PMC7831526.

- Nodoushan RJ, Alimoradi H, Nazari M. Spiritual Health and Stress in Pregnant Women During the Covid-19 Pandemic. SN Compr Clin Med. 2020;2(12):2528–34. https://doi.org/10.1007/s42399-020-00582-9 Epub 2020 Oct 16. PMID: 33083694; PMCID: PMC7561430.
- Mortazavi F, Mehrabadi M, KiaeeTabar R. Pregnant women's well-being and worry during the COVID-19 pandemic: a cross-sectional study. BMC Pregnancy Childbirth. 2021;21(1):59. https://doi.org/10.1186/s12884-021-03548-4 PMID: 33451292; PMCID: PMC7809640.
- 134. Chasson M, Taubman-Ben-Ari O, Abu-Sharkia S. Jewish and Arab pregnant women's psychological distress during the COVID-19 pandemic: the contribution of personal resources. Ethn Health. 2021;26(1):139–51. https://doi. org/10.1080/13557858.2020.1815000 Epub 2020 Sep 2. PMID: 32877202.
- 135. Taubman-Ben-Ari O, Chasson M, Abu-Sharkia S. Childbirth anxieties in the shadow of COVID-19: Self-compassion and social support among Jewish and Arab pregnant women in Israel. Health Soc Care Community. 2021;29(5):1409–19. https://doi.org/10.1111/hsc.13196 Epub 2020 Oct 14. PMID: 33058395; PMCID: PMC7675716.
- Moyer CA, Sakyi KS, Sacks E, Compton SD, Lori JR, Williams JEO. COVID-19 is increasing Ghanaian pregnant women's anxiety and reducing healthcare seeking. Int J Gynaecol Obstet. 2021;152(3):444–5. https:// doi.org/10.1002/ijgo.13487 Epub 2020 Dec 10. PMID: 33222215; PMCID: PMC9087653.
- 137. Dib S, Rougeaux E, Vázquez-Vázquez A, Wells JCK, Fewtrell M. Maternal mental health and coping during the COVID-19 lockdown in the UK: Data from the COVID-19 New Mum Study. Int J Gynaecol Obstet. 2020;151(3):407–14. https://doi.org/10.1002/ijgo.13397 Epub 2020 Oct 16. PMID: 32979272; PMCID: PMC9087547.
- Qi M, Li X, Liu S, Li Y, Huang W. Impact of the COVID-19 epidemic on patterns of pregnant women's perception of threat and its relationship to mental state: a latent class analysis. PLoS One. 2020;15(10):e0239697. https://doi.org/10.1371/journal.pone.0239697 PMID: 33007020; PMCID: PMC7531823.
- 139. Kassaw C, Pandey D. The prevalence of general anxiety disorder and its associated factors among women's attending at the perinatal service of Dilla University referral hospital, Dilla town, Ethiopia, April, 2020 in Covid pandemic. Heliyon. 2020;6(11):e05593. https://doi.org/10.1016/j.heliy on.2020.e05593 Erratum in: Heliyon. 2021 Jun 05;7(6):e07229. PMID: 33294715; PMCID: PMC7701184.
- 140. Zheng QX, Jiang XM, Lin Y, Liu GH, Lin YP, Kang YL, et al. The influence of psychological response and security sense on pregnancy stress during the outbreak of coronavirus disease 2019: a mediating model. J Clin Nurs. 2020;29(21–22):4248–57. https://doi.org/10.1111/jocn.15460 Epub 2020 Sep 9. PMID: 32909361.
- 141. Machado MMT, Rocha HAL, Castro MC, Sampaio EGM, Oliveira FA, Silva JPFD, et al. COVID-19 and mental health of pregnant women in Ceará, Brazil. Rev Saude Publica. 2021;55:37. https://doi.org/10.11606/s1518-8787.2021055003225. PMID: 34105605; PMCID: PMC8139842
- 142. Perzow SED, Hennessey EP, Hoffman MC, Grote NK, Davis EP, Hankin BL. Mental health of pregnant and postpartum women in response to the COVID-19 pandemic. J Affect Disord Rep. 2021;4:100123. https:// doi.org/10.1016/j.jadr.2021.100123 Epub 2021 Feb 25. PMID: 33649750; PMCID: PMC7904453.
- Pope J, Olander EK, Leitao S, Meaney S, Matvienko-Sikar K. Prenatal stress, health, and health behaviours during the COVID-19 pandemic: An international survey. Women Birth. 2022;35(3):272–9. https://doi. org/10.1016/j.wombi.2021.03.007 Epub 2021 Mar 19. PMID: 33757750; PMCID: PMC9051042.
- 144. Kotabagi P, Nauta M, Fortune L, Yoong W. COVID-19 positive mothers are not more anxious or depressed than non COVID pregnant women during the pandemic: A pilot case-control comparison. Eur J Obstet Gynecol Reprod Biol. 2020;252:615–6. https://doi.org/10.1016/j.ejogrb. 2020.07.037 Epub 2020 Jul 21. PMID: 32747133; PMCID: PMC7373009.
- 145. Naurin E, Markstedt E, Stolle D, Enström D, Wallin A, Andreasson I, et al. Pregnant under the pressure of a pandemic: a large-scale longitudinal survey before and during the COVID-19 outbreak. Eur J Pub Health. 2021;31(1):7–13. https://doi.org/10.1093/eurpub/ckaa223 PMID: 33231625; PMCID: PMC7717243.
- 146. Bo HX, Yang Y, Chen J, Zhang M, Li Y, Zhang DY, et al. Prevalence of depressive symptoms among pregnant and postpartum women in China during the COVID-19 pandemic. Psychosom Med.

2021;83(4):345-50. https://doi.org/10.1097/PSY.000000000000904 PMID: 33337594.

- 147. Barbosa-Leiker C, Smith CL, Crespi EJ, Brooks O, Burduli E, Ranjo S, et al. Stressors, coping, and resources needed during the COVID-19 pandemic in a sample of perinatal women. BMC Pregnancy Childbirth. 2021;21(1):171. https://doi.org/10.1186/s12884-021-03665-0 PMID: 33648450; PMCID: PMC7920400.
- 148. Stampini V, Monzani A, Caristia S, Ferrante G, Gerbino M, De Pedrini A, et al. The perception of Italian pregnant women and new mothers about their psychological wellbeing, lifestyle, delivery, and neonatal management experience during the COVID-19 pandemic lockdown: a web-based survey. BMC Pregnancy Childbirth. 2021;21(1):473. https://doi.org/10.1186/s12884-021-03904-4 PMID: 34210276; PMCID: PMC8246432.
- 149. Li C, Huo L, Wang R, Qi L, Wang W, Zhou X, et al. The prevalence and risk factors of depression in prenatal and postnatal women in China with the outbreak of Corona Virus Disease 2019. J Affect Disord. 2021;282:1203–9. https://doi.org/10.1016/j.jad.2021.01.019 Epub 2021 Jan 11. PMID: 33601697; PMCID: PMC7800140.
- 150. Bradfield Z, Wynter K, Hauck Y, Vasilevski V, Kuliukas L, Wilson AN, et al. Experiences of receiving and providing maternity care during the COVID-19 pandemic in Australia: a five-cohort cross-sectional comparison. PLoS One. 2021;16(3):e0248488. https://doi.org/10.1371/journal. pone.0248488 PMID: 33760851; PMCID: PMC7990294.
- 151. Kinser PA, Jallo N, Amstadter AB, Thacker LR, Jones E, Moyer S, et al. Depression, anxiety, resilience, and coping: the experience of pregnant and new mothers during the first few months of the COVID-19 pandemic. J Women's Health (Larchmt). 2021;30(5):654–64. https://doi.org/ 10.1089/jwh.2020.8866 Epub 2021 Apr 12. PMID: 33844945; PMCID: PMC8182651.
- 152. Özkan Şat S, Yaman SŞ. Use of Mobile applications by pregnant women and levels of pregnancy distress during the COVID-19 (coronavirus) pandemic. Matern Child Health J. 2021;25(7):1057–68. https://doi.org/10.1007/s10995-021-03162-y Epub 2021 Apr 30. PMID: 33929653; PMCID: PMC8085653.
- 153. Kawamura H, Orisaka M, Yoshida Y. Mentality of pregnant women and obstetric healthcare workers about prenatal SARS-CoV-2 testing: a regional survey over the first wave of the COVID-19 pandemic in Japan. J Obstet Gynaecol Res. 2021;47(5):1763–71. https://doi.org/10.1111/jog. 14740 Epub 2021 Mar 17. PMID: 33733569; PMCID: PMC8250815.
- 154. Silverio SA, Davies SM, Christiansen P, Aparicio-García ME, Bramante A, Chen P, et al. A validation of the postpartum specific anxiety scale 12-item research short-form for use during global crises with five translations. BMC Pregnancy Childbirth. 2021;21(1):112. https://doi.org/ 10.1186/s12884-021-03597-9 PMID: 33557764; PMCID: PMC7868877.
- 155. Ahlers-Schmidt CR, Hervey AM, Neil T, Kuhlmann S, Kuhlmann Z. Concerns of women regarding pregnancy and childbirth during the COVID-19 pandemic. Patient Educ Couns. 2020;103(12):2578–82. https://doi.org/10.1016/j.pec.2020.09.031 Epub ahead of print. PMID: 33010997; PMCID: PMC7515599.
- 156. De Arriba-García M, Diaz-Martinez A, Monfort-Ortiz R, Roca-Prats A, Monfort-Beltrán S, Ivañez-Muñoz M, et al. GESTACOVID project: psychological and perinatal effects in Spanish pregnant women subjected to confinement due to the COVID-19 pandemic. J Matern Fetal Neonatal Med. 2021:1–7. https://doi.org/10.1080/14767058.2021.1888922 Epub ahead of print. PMID: 33615968.
- Chaves C, Marchena C, Palacios B, Salgado A, Duque A. Effects of the COVID-19 pandemic on perinatal mental health in Spain: Positive and negative outcomes. Women Birth. 2022;35(3):254–61. https://doi.org/ 10.1016/j.wombi.2021.01.007 Epub 2021 Jan 16. PMID: 33461897; PMCID: PMC9051254.
- 158. Wdowiak A, Makara-Studzińska M, Raczkiewicz D, Janczyk P, Słabuszewska-Jóźwiak A, Wdowiak-Filip A, et al. Effect of excessive body weight and emotional disorders on the course of pregnancy and wellbeing of a newborn before and during COVID-19 pandemic. J Clin Med. 2021;10(4):656. https://doi.org/10.3390/jcm10040656 PMID: 33572044; PMCID: PMC7916002.
- Ravaldi C, Vannacci A. The COVID-ASSESS dataset COVID19 related anxiety and stress in prEgnancy, poSt-partum and breaStfeeding during lockdown in Italy. Data Brief. 2020;33:106440. https://doi.org/

10.1016/j.dib.2020.106440 Epub 2020 Oct 20. PMID: 33102644; PMCID: PMC7573634.

- 160. Wyszynski DF, Hernandez-Diaz S, Gordon-Dseagu V, Ramiro N, Koenen KC. Stress levels among an international sample of pregnant and postpartum women during the COVID-19 pandemic. J Matern Fetal Neonatal Med. 2021;22:1–9. https://doi.org/10.1080/14767058.2021. 1936489 Epub ahead of print. PMID: 34157929.
- Sbrilli MD, Haigler K, Laurent HK. The Indirect Effect of Parental Intolerance of Uncertainty on Perinatal Mental Health via Mindfulness During COVID-19. Mindfulness (N Y). 2021;12(8):1999–2008. https://doi.org/10. 1007/s12671-021-01657-x Epub 2021 Jun 2. PMID: 34093889; PMCID: PMC81.
- Davenport MH, Meyer S, Meah VL, Strynadka MC, Khurana R. Moms Are Not OK: COVID-19 and Maternal Mental Health. Front Glob Women's Health. 2020:1. https://www.frontiersin.org/articles/10.3389/fgwh.2020. 00001. https://doi.org/10.3389/fgwh.2020.00001.
- 163. Di Mascio D, Khalil A, Saccone G, Rizzo G, Buca D, Liberati M, et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2020;2(2):100107. https://doi.org/10.1016/j.ajogmf.2020. 100107 Epub 2020 Mar 25. PMID: 32292902; PMCID: PMC7104131.
- Juan J, Gil MM, Rong Z, Zhang Y, Yang H, Poon LC. Effect of coronavirus disease 2019 (COVID-19) on maternal, perinatal and neonatal outcome: systematic review. Ultrasound Obstet Gynecol. 2020;56(1):15– 27. https://doi.org/10.1002/uog.22088 PMID: 32430957; PMCID: PMC7276742.
- 165. Amaral WNd, Moraes CLd, Rodrigues APdS, Noll M, Arruda JT, Mendonça CR. Maternal Coronavirus Infections and Neonates Born to Mothers with SARS-CoV-2: A Systematic Review. Healthcare. 2020;8(4):511. https://doi.org/10.3390/healthcare8040511.
- 166. Di Mascio D, Sen C, Saccone G, Galindo A, Grünebaum A, Yoshimatsu J, et al. Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19. J Perinat Med. 2020;48(9):950–8. https://doi.org/10.1515/jpm-2020-0355 J Perinat Med. 2020;49(1):111–115. PMID: 32975205.
- 167. Sentilhes L, De Marcillac F, Jouffrieau C, Kuhn P, Thuet V, Hansmann Y, et al. Coronavirus disease 2019 in pregnancy was associated with maternal morbidity and preterm birth. Am J Obstet Gynecol. 2020;223(6):914.e1–914.e15. https://doi.org/10.1016/j.ajog.2020.06. 022 Epub 2020 Jun 15. PMID: 32553908; PMCID: PMC7294260.
- Sahin D, Tanacan A, Erol SA, Anuk AT, Yetiskin FDY, Keskin HL, et al. Updated experience of a tertiary pandemic center on 533 pregnant women with COVID-19 infection: A prospective cohort study from Turkey. Int J Gynaecol Obstet. 2021;152(3):328–34. https://doi.org/ 10.1002/ijgo.13460 Epub 2020 Dec 12. PMID: 33131057; PMCID: PMC9087535.
- 169. Kayem G, Lecarpentier E, Deruelle P, Bretelle F, Azria E, Blanc J, et al. A snapshot of the Covid-19 pandemic among pregnant women in France. J Gynecol Obstet Hum Reprod. 2020;49(7):101826. https://doi. org/10.1016/j.jogoh.2020.101826 Epub 2020 Jun 4. PMID: 32505805; PMCID: PMC7270811.
- 170. Adhikari EH, Moreno W, Zofkie AC, MacDonald L, McIntire DD, Collins RRJ, et al. Pregnancy outcomes among women with and without severe acute respiratory syndrome coronavirus 2 infection. JAMA Netw Open. 2020;3(11):e2029256. https://doi.org/10.1001/jaman etworkopen.2020.29256 PMID: 33211113; PMCID: PMC7677755.
- 171. Garcia Rodriguez A, Marcos Contreras S, Fernandez Manovel SM, Marcos Vidal JM, Diez Buron F, Fernandez Fernandez C, et al. SARS-COV-2 infection during pregnancy, a risk factor for eclampsia or neurological manifestations of COVID-19? Case report. BMC Pregnancy Childbirth. 2020;20(1):587. https://doi.org/10.1186/s12884-020-03275-2 PMID: 33023500; PMCID: PMC7538036.
- 172. Islam MM, Poly TN, Walther BA, Yang HC, Wang CW, Hsieh WS, et al. Clinical characteristics and neonatal outcomes of pregnant patients with COVID-19: a systematic review. Front Med (Lausanne). 2020;7:573468. https://doi.org/10.3389/fmed.2020.573468 PMID: 33392213; PMCID: PMC7772992.
- Hansen JN, Hine J, Strout TD. COVID-19 and preeclampsia with severe features at 34-weeks gestation. Am J Emerg Med. 2021;39:252.e3–5.

https://doi.org/10.1016/j.ajem.2020.06.052 Epub 2020 Jun 25. PMID: 33008706; PMCID: PMC7315969.

- 174. Oltean I, Tran J, Lawrence S, Ruschkowski BA, Zeng N, Bardwell C, et al. Impact of SARS-CoV-2 on the clinical outcomes and placental pathology of pregnant women and their infants: a systematic review. Heliyon. 2021;7(3):e06393. https://doi.org/10.1016/j.heliyon.2021. e06393 Epub 2021 Mar 2. PMID: 33688585; PMCID: PMC7923950.
- 175. Wei SQ, Bilodeau-Bertrand M, Liu S, Auger N. The impact of COVID-19 on pregnancy outcomes: a systematic review and meta-analysis. CMAJ. 2021;193(16):E540–8. https://doi.org/10.1503/cmaj.202604 Epub 2021 Mar 19. PMID: 33741725; PMCID: PMC8084555.
- Singh V, Choudhary A, Datta MR, Ray A. Maternal and neonatal outcomes of COVID-19 in pregnancy: a single-Centre observational study. Cureus. 2021;13(2):e13184. https://doi.org/10.7759/cureus. 13184 PMID: 33717728; PMCID: PMC7943051.
- 177. Della Gatta AN, Rizzo R, Pilu G, Simonazzi G. Coronavirus disease 2019 during pregnancy: a systematic review of reported cases. Am J Obstet Gynecol. 2020;223(1):36–41. https://doi.org/10.1016/j. ajog.2020.04.013 Epub 2020 Apr 18. PMID: 32311350; PMCID: PMC7165087.
- 178. Di Toro F, Gjoka M, Di Lorenzo G, De Santo D, De Seta F, Maso G, et al. Impact of COVID-19 on maternal and neonatal outcomes: a systematic review and meta-analysis. Clin Microbiol Infect. 2021;27(1):36–46. https://doi.org/10.1016/j.cmi.2020.10.007 Epub 2020 Nov 2. PMID: 33148440; PMCID: PMC7605748.
- 179. Bellos I, Pandita A, Panza R. Maternal and perinatal outcomes in pregnant women infected by SARS-CoV-2: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2021;256:194–204. https://doi.org/10.1016/j.ejogrb. 2020.11.038 Epub 2020 Nov 13. PMID: 33246205; PMCID: PMC7664337.
- Abou Ghayda R, Li H, Lee KH, Lee HW, Hong SH, Kwak M, et al. COVID-19 and adverse pregnancy outcome: a systematic review of 104 cases. J Clin Med. 2020;9(11):3441. https://doi.org/10.3390/jcm9113441 PMID: 33114779; PMCID: PMC7692613.
- 181. Remaeus K, Savchenko J, Brismar Wendel S, Brusell Gidlöf S, Graner S, Jones E, et al. Characteristics and short-term obstetric outcomes in a case series of 67 women test-positive for SARS-CoV-2 in Stockholm, Sweden. Acta Obstet Gynecol Scand. 2020;99(12):1626–31. https://doi. org/10.1111/aogs.14006 Epub 2020 Nov 5. PMID: 32981033; PMCID: PMC7537005.
- 182. Mullins E, Hudak ML, Banerjee J, Getzlaff T, Townson J, Barnette K, et al. PAN-COVID investigators and the National Perinatal COVID-19 Registry Study Group. Pregnancy and neonatal outcomes of COVID-19: coreporting of common outcomes from PAN-COVID and AAP-SONPM registries. Ultrasound Obstet Gynecol. 2021;57(4):573–81. https://doi. org/10.1002/uog.23619 PMID: 33620113; PMCID: PMC8014713.
- Zaigham M, Andersson O. Maternal and perinatal outcomes with COVID-19: a systematic review of 108 pregnancies. Acta Obstet Gynecol Scand. 2020;99(7):823–9. https://doi.org/10.1111/aogs.13867 Epub 2020 Apr 20. PMID: 32259279; PMCID: PMC7262097.
- 184. Yu N, Li W, Kang Q, Xiong Z, Wang S, Lin X, et al. Clinical features and obstetric and neonatal outcomes of pregnant patients with COVID-19 in Wuhan, China: a retrospective, single-Centre, descriptive study. Lancet Infect Dis. 2020;20(5):559–64. https://doi.org/10.1016/ S1473-3099(20)30176-6 Epub 2020 Mar 24. PMID: 32220284; PMCID: PMC7158904.
- Galang RR, Chang K, Strid P, Snead MC, Woodworth KR, House LD, et al. Severe coronavirus infections in pregnancy: a systematic review. Obstet Gynecol. 2020;136(2):262–72. https://doi.org/10.1097/AOG.000000000 004011 PMID: 32544146; PMCID: PMC7942856.
- Capobianco G, Saderi L, Aliberti S, Mondoni M, Piana A, Dessole F, et al. COVID-19 in pregnant women: A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;252:543–58. https://doi.org/10. 1016/j.ejogrb.2020.07.006 Epub 2020 Jul 16. PMID: 32713730; PMCID: PMC7363619.
- Mappa I, Distefano FA, Rizzo G. Effects of coronavirus 19 pandemic on maternal anxiety during pregnancy: a prospectic observational study. J Perinat Med. 2020;48(6):545–50. https://doi.org/10.1515/jpm-2020-0182 PMID: 32598320.
- Ayaz R, Hocaoğlu M, Günay T, Yardımcı OD, Turgut A, Karateke A. Anxiety and depression symptoms in the same pregnant women before

and during the COVID-19 pandemic. J Perinat Med. 2020;48(9):965–70. https://doi.org/10.1515/jpm-2020-0380 PMID: 32887191.

- 189. Dubey P, Reddy SY, Manuel S, Dwivedi AK. Maternal and neonatal characteristics and outcomes among COVID-19 infected women: An updated systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;252:490–501. https://doi.org/10.1016/j.ejogrb.2020. 07.034 Epub 2020 Jul 22. PMID: 32795828; PMCID: PMC7373687.
- 190. Pierce-Williams RAM, Burd J, Felder L, Khoury R, Bernstein PS, Avila K, et al. Clinical course of severe and critical coronavirus disease 2019 in hospitalized pregnancies: a United States cohort study. Am J Obstet Gynecol MFM. 2020 Aug;2(3):100134. https://doi.org/10.1016/j.ajogmf. 2020.100134 Epub 2020 May 8. PMID: 32391519; PMCID: PMC7205698.
- 191. Gao YJ, Ye L, Zhang JS, Yin YX, Liu M, Yu HB, et al. Clinical features and outcomes of pregnant women with COVID-19: a systematic review and meta-analysis. BMC Infect Dis. 2020;20(1):564. https://doi.org/10.1186/ s12879-020-05274-2 PMID: 32746801; PMCID: PMC7396931.
- 192. Yang R, Mei H, Zheng T, Fu Q, Zhang Y, Buka S, et al. Pregnant women with COVID-19 and risk of adverse birth outcomes and maternal-fetal vertical transmission: a population-based cohort study in Wuhan, China. BMC Med. 2020;18(1):330. https://doi.org/10.1186/s12916-020-01798-1 PMID: 33070775; PMCID: PMC7568966.
- 193. Yee J, Kim W, Han JM, Yoon HY, Lee N, Lee KE, et al. Clinical manifestations and perinatal outcomes of pregnant women with COVID-19: a systematic review and meta-analysis. Sci Rep. 2020;10(1):18126. https://doi.org/10.1038/s41598-020-75096-4. PMID: 33093582; PMCID: PMC7581768.
- Liu X, Chen M, Wang Y, Sun L, Zhang J, Shi Y, et al. Prenatal anxiety and obstetric decisions among pregnant women in Wuhan and Chongqing during the COVID-19 outbreak: a cross-sectional study. BJOG. 2020;127(10):1229–40. https://doi.org/10.1111/1471-0528.16381 Epub 2020 Aug 2. PMID: 32583536; PMCID: PMC7362035.
- Novoa RH, Quintana W, Llancarí P, Urbina-Quispe K, Guevara-Ríos E, Ventura W. Maternal clinical characteristics and perinatal outcomes among pregnant women with coronavirus disease 2019. A systematic review. Travel Med Infect Dis. 2021;39:101919. https://doi.org/10. 1016/j.tmaid.2020.101919 Epub 2020 Nov 19. PMID: 33220455; PMCID: PMC7674121.
- 196. Matar R, Alrahmani L, Monzer N, Debiane LG, Berbari E, Fares J, et al. Clinical presentation and outcomes of pregnant women with coronavirus disease 2019: a systematic review and Meta-analysis. Clin Infect Dis. 2021;72(3):521–33. https://doi.org/10.1093/cid/ciaa828 PMID: 32575114; PMCID: PMC7337697.
- Gur RE, White LK, Waller R, Barzilay R, Moore TM, Kornfield S, et al. The Disproportionate Burden of the COVID-19 Pandemic Among Pregnant Black Women. Psychiatry Res. 2020;293:113475. https://doi.org/10. 1016/j.psychres.2020.113475 Epub 2020 Sep 24. PMID: 33007683; PMCID: PMC7513921.
- 198. Sakowicz A, Ayala AE, Ukeje CC, Witting CS, Grobman WA, Miller ES. Risk factors for severe acute respiratory syndrome coronavirus 2 infection in pregnant women. Am J Obstet Gynecol MFM. 2020;2(4):100198. https://doi.org/10.1016/j.ajogmf.2020.100198 Epub 2020 Aug 17. PMID: 32838274; PMCID: PMC7430222.
- 199. Taubman-Ben-Ari O, Chasson M, Abu Sharkia S, Weiss E. Distress and anxiety associated with COVID-19 among Jewish and Arab pregnant women in Israel. J Reprod Infant Psychol. 2020;38(3):340–8. https:// doi.org/10.1080/02646838.2020.1786037 Epub 2020 Jun 23. PMID: 32573258.
- 200. Ng QJ, Koh KM, Tagore S, Mathur M. Perception and feelings of antenatal women during COVID-19 pandemic: a cross-sectional survey. Ann Acad Med Singap. 2020;49(8):543–52 PMID: 33164024.
- Hamzehgardeshi Z, Omidvar S, Amoli AA, Firouzbakht M. Pregnancyrelated anxiety and its associated factors during COVID-19 pandemic in Iranian pregnant women: a web-based cross-sectional study. BMC Pregnancy Childbirth. 2021;21(1):208. https://doi.org/10.1186/s12884-021-03694-9 PMID: 33722198; PMCID: PMC7957463.
- Ozsurmeli M, Terzi H, Hocaoglu M, Bilir RA, Gunay T, Unsal D, et al. Clinical characteristics, maternal and neonatal outcomes of pregnant women with SARS-CoV-2 infection in Turkey. Bratisl Lek Listy. 2021;122(2):152–7. https://doi.org/10.4149/BLL_2021_023 PMID: 33502885.

- Makvandi S, Mahdavian M, Kazemi-Nia G, Vahedian-Azimi A, Guest PC, Karimi L, et al. The 2019 novel coronavirus disease in pregnancy: a systematic review. Adv Exp Med Biol. 2021;1321:299–307. https://doi. org/10.1007/978-3-030-59261-5_27 PMID: 33656735.
- 204. Guo Y, Yuan J, Wang M, Yu Y, Bian J, Fan C. Case series of 20 pregnant women with 2019 novel coronavirus disease in Wuhan, China. J Obstet Gynaecol Res. 2021;47(4):1344–52. https://doi.org/10.1111/jog.14664 Epub 2021 Jan 18. PMID: 33462908; PMCID: PMC8012983.
- Karimi L, Vahedian-Azimi A, Makvandi S, Sahebkar A. A systematic review of 571 pregnancies affected by COVID-19. Adv Exp Med Biol. 2021;1321:287–98. https://doi.org/10.1007/978-3-030-59261-5_26 PMID: 33656734.
- Waratani M, Ito F, Tanaka Y, Mabuchi A, Mori T, Kitawaki J. Severe coronavirus disease pneumonia in a pregnant woman at 25 weeks' gestation: A case report. J Obstet Gynaecol Res. 2021;47(4):1583–8. https://doi. org/10.1111/jog.14701 Epub 2021 Feb 15. PMID: 33590664; PMCID: PMC8014489.
- Savasi VM, Parisi F, Patanè L, Ferrazzi E, Frigerio L, Pellegrino A, et al. Clinical findings and disease severity in hospitalized pregnant women with coronavirus disease 2019 (COVID-19). Obstet Gynecol. 2020;136(2):252– 8. https://doi.org/10.1097/AOG.00000000003979 PMID: 32433453.
- Effati-Daryani F, Zarei S, Mohammadi A, Hemmati E, Ghasemi Yngyknd S, Mirghafourvand M. Depression, stress, anxiety and their predictors in Iranian pregnant women during the outbreak of COVID-19. BMC Psychol. 2020;8(1):99. https://doi.org/10.1186/s40359-020-00464-8 PMID: 32962764; PMCID: PMC7506842.
- 209. Smith V, Seo D, Warty R, Payne O, Salih M, Chin KL, et al. Maternal and neonatal outcomes associated with COVID-19 infection: a systematic review. PLoS One. 2020;15(6):e0234187. https://doi.org/10.1371/journal. pone.0234187 PMID: 32497090; PMCID: PMC7272020.
- Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gong Q, Liao J, Yang H, Hou W, Zhang Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809–815. https://doi.org/10.1016/S0140-6736(20)30360-3. Epub 2020 Feb 12. Erratum in: Lancet. 2020 Mar 28;395(10229):1038. Erratum in: Lancet. 2020 Mar 28;395(10229):1038. PMID: 32151335; PMCID: PMC7159281.
- Wang Y, Chen L, Wu T, Shi H, Li Q, Jiang H, et al. Impact of Covid-19 in pregnancy on mother's psychological status and infant's neurobehavioral development: a longitudinal cohort study in China. BMC Med. 2020;18(1):347. https://doi.org/10.1186/s12916-020-01825-1 PMID: 33143711; PMCID: PMC7609382.
- Janevic T, Glazer KB, Vieira L, Weber E, Stone J, Stern T, et al. Racial/ethnic disparities in very preterm birth and preterm birth before and during the COVID-19 pandemic. JAMA Netw Open. 2021;4(3):e211816. https:// doi.org/10.1001/jamanetworkopen.2021.1816 PMID: 33729505; PMCID: PMC7970336.
- Cao D, Yin H, Chen J, Tang F, Peng M, Li R, et al. Clinical analysis of ten pregnant women with COVID-19 in Wuhan, China: a retrospective study. Int J Infect Dis. 2020;95:294–300. https://doi.org/10.1016/j.ijid. 2020.04.047 Epub 2020 Apr 23. PMID: 32335338; PMCID: PMC7179499.
- Lebel C, MacKinnon A, Bagshawe M, Tomfohr-Madsen L, Giesbrecht G. Elevated depression and anxiety symptoms among pregnant individuals during the COVID-19 pandemic. J Affect Disord. 2020;277:5–13. https://doi.org/10.1016/j.jad.2020.07.126 Epub 2020 Aug 1. Erratum in: J Affect Disord. 2021 Jan 15;279:377–379. PMID: 32777604; PMCID: PMC7395614.
- 215. Marín Gabriel MA, Reyne Vergeli M, Caserío Carbonero S, Sole L, Carrizosa Molina T, Rivero Calle I, et al. Neo-COVID-19 Research Group. Maternal, Perinatal and neonatal outcomes with COVID-19: a multicenter study of 242 pregnancies and their 248 infant newborns during their first month of life. Pediatr Infect Dis J. 2020;39(12):e393–7. https:// doi.org/10.1097/INF.00000000002902 PMID: 32947599.
- Lokken EM, Huebner EM, Taylor GG, Hendrickson S, Vanderhoeven J, Kachikis A, et al. Disease severity, pregnancy outcomes, and maternal deaths among pregnant patients with severe acute respiratory syndrome coronavirus 2 infection in Washington State. Am J Obstet Gynecol. 2021;225(1):77.e1–77.e14. https://doi.org/10.1016/j.ajog.2020. 12.1221 Epub 2021 Jan 27. PMID: 33515516; PMCID: PMC7838012.

- 217. Ashraf MA, Keshavarz P, Hosseinpour P, Erfani A, Roshanshad A, Pourdast A, et al. Coronavirus disease 2019 (COVID-19): a systematic review of pregnancy and the possibility of vertical transmission. J Reprod Infertil. 2020;21(3):157–68 PMID: 32685412; PMCID: PMC7362089.
- 218. De Vasconcelos GA, Santos SI. SARS-CoV-2 in pregnancy-the first wave. Medicina (Kaunas). 2021;57(3):241. https://doi.org/10.3390/medicina57 030241 PMID: 33807607; PMCID: PMC7999825.
- Huntley BJF, Huntley ES, Di Mascio D, Chen T, Berghella V, Chauhan SP. Rates of maternal and perinatal mortality and vertical transmission in pregnancies complicated by severe acute respiratory syndrome coronavirus 2 (SARS-co-V-2) infection: a systematic review. Obstet Gynecol. 2020;136(2):303–12. https://doi.org/10.1097/AOG.000000000004010 PMID: 32516273.
- 220. Khoury R, Bernstein PS, Debolt C, Stone J, Sutton DM, Simpson LL, et al. Characteristics and outcomes of 241 births to women with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection at five new York City medical centers. Obstet Gynecol. 2020;136(2):273–82. https://doi.org/10.1097/AOG.00000000004025 PMID: 32555034.
- 221. Diriba K, Awulachew E, Getu E. The effect of coronavirus infection (SARS-CoV-2, MERS-CoV, and SARS-CoV) during pregnancy and the possibility of vertical maternal-fetal transmission: a systematic review and meta-analysis. Eur J Med Res. 2020;25(1):39. https://doi.org/10. 1186/s40001-020-00439-w PMID: 32887660; PMCID: PMC7471638.
- 222. Assiri A, Abedi GR, Al Masri M, Bin Saeed A, Gerber SI, Watson JT. Middle East respiratory syndrome coronavirus infection during pregnancy: a report of 5 cases from Saudi Arabia. Clin Infect Dis. 2016;63(7):951–3. https://doi.org/10.1093/cid/ciw412 Epub 2016 Jun 28. PMID: 27358348; PMCID: PMC5812010.
- 223. Malik A, El Masry KM, Ravi M, Sayed F. Middle East respiratory syndrome coronavirus during pregnancy, Abu Dhabi, United Arab Emirates, 2013. Emerg Infect Dis. 2016;22(3):515–7. https://doi.org/10.3201/eid2203. 151049.
- Harville E, Xiong X, Buekens P. Disasters and perinatal health:a systematic review. Obstet Gynecol Surv. 2010;65:713–28 [PMID: 21375788. https://doi.org/10.1097/ogx.0b013e31820eddbe.
- 225. Grumi S, Provenzi L, Accorsi P, Biasucci G, Cavallini A, Decembrino L, et al. Depression and anxiety in mothers who were pregnant during the COVID-19 outbreak in northern Italy: the role of pandemic-related emotional stress and perceived social support. Front Psychiatry. 2021;12:716488. https://doi.org/10.3389/fpsyt.2021.716488 PMID: 34539466; PMCID: PMC8446509.
- 226. Filippetti ML, Clarke ADF, Rigato S. The mental health crisis of expectant women in the UK: effects of the COVID-19 pandemic on prenatal mental health, antenatal attachment and social support. BMC Pregnancy Childbirth. 2022;22:68. https://doi.org/10.1186/s12884-022-04387-7.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

