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Abstract

Postpartum hemorrhage (PPH) is an obstetric emergency instigated by excessive blood loss which occurs frequently
after the delivery. The PPH can result in volume depletion, hypovolemic shock, and anemia. This is particular condition
is considered a major cause of maternal deaths around the globe. Presently, physicians utilize visual examination for
calculating blood and fluid loss during delivery. Since the classical methods depend on expert knowledge and are
inaccurate, automated machine learning based PPH diagnosis models are essential. In regard to this aspect, this study
introduces an efficient oppositional binary crow search algorithm (OBCSA) with an optimal stacked auto encoder
(OSAE) model, called OBCSA-OSAE for PPH prediction. The goal of the proposed OBCSA-OSAE technique is to detect
and classify the presence or absence of PPH. The OBCSA-OSAE technique involves the design of OBCSA based feature
selection (FS) methods to elect an optimum feature subset. Additionally, the OSAE based classification model is
developed to include an effective parameter adjustment process utilizing Equilibrium Optimizer (EO). The
performance validation of the OBCSA-OSAE technique is performed using the benchmark dataset. The experimental
values pointed out the benefits of the OBCSA-OSAE approach in recent methods.

Keywords: Postpartum hemorrhage, Predictive model, Machine learning, Metaheuristics, Feature Selection,
Classification

Introduction
Postpartum hemorrhage (PPH) is determined as blood
loss more that >500 mL within 24 hours after vaginal
birth , and is a major reason for pregnancy morbidity
, both in the US and world-wide [1]. The severity and
incidence of PPH and the morbidity connected to blood
product transfusion are increased [2]. The higher occur-
rences of PPH in the developing world is because of the
lack of diagnosis approaches and medication utilized in
the active management of the third stage. The implemen-
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tation and development of quality initiatives have made
aggressive supervision and early recognition of PPH with
a reduction in disseminated intravascular coagulopathy,
blood product transfusion, renal failure, and respiratory
distress syndrome [3]. Most priorities in the PPH security
bundles are identification of patients at increased risk of
hemorrhage based on intrapartum and antenatal risk and
the assessment of hemorrhage risk factors [4].
Existing approaches for forecasting postpartum hemor-

rhage depend on a risk stratification method. Enhanced
prediction capacity is attained using conventional
machine learning (ML) and statistical approaches [5].
Most recent developments in MLmethod applies modern
computer-driven algorithms intended to identify pattern
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from data have received more interest due to their better
prediction capability. Mainly though defining hospital
readmission and intensive care unit admission than statis-
tical methods. While these advanced methodologies have
not been broadly tested in the obstetric field. The risk
related factors attributed to PPH have been widely studied
on the basis of traditional statistical models [6]. Generally,
the Lasso regression model, or Logistic regression model
has been utilized for predicting the risk of PPH.
Particularly, logistic or lasso regression model shows

better discrimination capability [7] . According to mater-
nalmedical history and clinical characteristics, a risk score
is utilized for PPH prediction. Even though the traditional
predictive models are shown to be efficient, the predictive
accuracy isn’t satisfied: only 60% of women having higher
PPH risks are recognized, while another 40% of women
who had PPH weren’t recognized at an earlier stage [8].
The benefits of ML method involve the capacity of pro-
cessing non-additive relationships and integrating com-
plex relations among other aspects which don’t require
pre-determination [9]. For this reason, it is possible that
ML methods are capable of precisely identifying women
at the maximum risk of postpartum hemorrhage, and
enhancing medical results and obstetric decision making
[10].
This study develops an op positional binary crow search

algorithm (OBCSA) with an optimal stacked auto encoder
(OSAE) model known as OBCSA-OSAE for PPH predic-
tion. The OBCSA-OSAE technique performs the detec-
tion and classification process of PPH. Moreover,the
OBCSA-OSAE technique involves the design of OBCSA
based feature selection (FS) technique for optimum fea-
ture subsets. Additionally, the OSAE based classification
model is developed to include an effective parameter
adjustment process using Equilibrium Optimizer (EO).
The experimental outcomes highlighted that the OBCSA-
OSAE technique has depicted the other techniques in
terms of different evaluation parameters. The method
helps to classify the PPH with classification and with good
feature selection techniques. Hence, the CSA helps in the
optimization algorithm. This classification result will help
the doctor to give the patient an early alert and also the
counseling session about them to get them prepared men-
tally and physically if that just happened. The whole paper
is structured with an introduction and the related work
in the beginning and followed by the proposed OBCSA
opposing binary crow search Algorithm, process, and val-
idation step of the model. Results are compared with the
existing model, and finally, the discussion and conclusion
are presented at the end of the paper with the focused
results.

Related works
Venkatesh et al. [11] employed LR method with and with-
out lasso regularization (lasso regression) as the 2 sta-
tistical approaches, and XGBoost and RF as the 2 ML
methods for predicting postpartum hemorrhage. Model
accuracy was evaluated using calibration, decision curves,
and C statistics (viz., concordance index). Kumar et al. [12]
developed an automation method with wearable devices
for preventing PPH in pregnant women. The e device eval-
uate parameters such as perspiration rate, temperature,
pulse rate, and blood pressure. Fuzzy neural method-
based rules are utilized for each parameter in predicting
the risks of PPH, and for measuring the accuracy of
method to reduce morbidity and mortality rates. Wu et
al. [13] aim to construct a nomogram integrating clinical
and radiomic features of a placenta to forecast the risks
of PPH occurring in a caesarian delivery (CD). Radiomic
features are selected according to their correlation with
EBL. clinico-radiomic, Radiomic, radiological, clinical,
and clinico-radiological methods are constructed for pre-
dicting the risks of PPH for all patients. The method with
a better predictive accuracy was authenticated with its
clinical application, discrimination ability, and calibration
curve. Betts et al. [14] intended to forecast the risks of
general maternal postpartum complication that requires
inpatient care. A gradient boosting tree is utilized by 5-
fold cross-validation for comparing method accuracy. The
better performing methods for all the outcomes are mea-
sured later in the independent data validation with the
AUC-ROC method.
Man [15] intended to apply the ML classifier meth-

ods for better PPH risk prediction . Real datasets were
integrated and extracted from EHRS using twelve param-
eters that are considered to be very appropriate to PPH.
The 6 ML methods involving LR, DT, RF, KNN, SVM,
and ANN have been compared and tested based on
their prediction performance and another matrix such
as recall and precision. The RF method is believed to
be the optimal method with 89% accuracy. Kumar et al.
[16] focused on the detection and symptoms of post-
partum hypothermia and hemorrhage. These wearable
devices provide a life-saving product which is comfort-
able, affordable, and easy to use. Also, they help to alleviate
other healthcare problems faced by women during and
after child birth. At first, a lower cost prototype method
was constructed that has sensor nodes that measure and
record blood pressure, body temperature, perspiration
, heart, and pulse rate. The overall purpose of these
devices serve to provide efficient and accurate results
to assist in the decline of morbidity rate and maternal
issues.
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Hochman et al. [17] validated and developed an ML
based PPD predictive method using EHR data, and
recognized new PPD predictor. PPD was determined
by the novel diagnoses of any antidepressant prescrip-
tion/depressive episode within the first postpartum year.
A gradient boostingDTmethodwas employed for clinical,
obstetric features and EHR derived socio-demographic.
The ML based methods that integrate HER derived pre-
dictors can increase symptoms-based screening practices
by recognizing the higher risk population as a fundamen-
tal necessity for preventive interference before the onset
of PPD. Yang et al. [18] adapted a univariate LR method
for selecting the important features (P < 0.01). Then ,
they trained numerous ANN and binary LR methods
for predicting postpartum hemorrhaging the NN method
includes RBF, MLP, and BP. To identify and compare the
precise networks, they utilized the ROC curve and the
confusion matrix.
Zheutlin et al. [19] proposed a new risk assessment

method and relate its performance to those employed in
present practice. With a large set of potential identified
and risk factor removed from EMR that was accessi-
ble previous to delivery, they trained a gradient boosting
method from the subset of cohorts. In held-out test sam-
ples, they related performances of this method to three
medical risk tools and one formerly published method.
The result suggests that this method is an outstanding
candidate for prospective assessment and can eventu-
ally decrease PPH mortality and morbidity due to earlier
detection alongside prevention measures.

The proposed OBCSA-OSAEmodel
In this study, an effective OBCSA-OSAE technique is
established for the detection and classification of PPH.
The proposed OBCSA-OSAE technique incorporated
two major stages, choice of features and classification.

Principally, the OBCSA technique is presented for opti-
mal selection of a subset of features. Followed by the
EO algorithm to derive the optimally choose parame-
ters involved in the SAE model. Lastly, the SAE model is
used for PPH classification. Figure 1 illustrates the general
process of the OBCSA-OSAE model.

Algorithmic design of OBCSA-FS technique
In the initial stage, the OBCSA-FS technique is designed
to choose an optimal subset of features. The OBCSA
algorithm is designed for the integration of oppositional
based learning (OBL) concept alongside BCSA. The Crow
Search Algorithm is one of the latest evolutionary algo-
rithms developed by Askarzadeh [20], which was stimu-
lated by the social habits of crow through a search proce-
dure that mimics their behavior in the wild. The concept
of CSA was inspired by the way that these animals hide
food in a given place and retrieve it at a later time. Math-
ematically, a flock of crows is represented asnc, and in the
search space, the position of crow i at iteration t is xti . In
CSA, the hidden location of food can be remembered by
the crow iThe procedure of upgrading the location of the
crow thieves(crows who want to steal other crow food)
was performed by

xt+1
i = xti + τ × fl ×

(
Mt

j − xti
)
, i = 1, 2, . . . nc, (1)

Whereas fl denotes the flight length and τ signifies an
arbitrary value in the range of zero and one , M is a fitness
function is used to evaluate each crow, and its value is put
as an initial memory value for the updation.
The next state of the problem is that crow j, the owner

of the food, knows that the crow i is observing him and
following him, hence the crew owner would deceive crow i
by going to any other location in the search space. In CSA,
the location of crow i is upgraded by an arbitrary location,
and the accurate state can be defined as:

Fig. 1 Overall process of OBCSA-OSAE model
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xt+1
i =

(
xti + τ × fl ×

(
Mt

j − xti
)
, if θ ≥ AP

random position, otherwise
(2)

Whereas θ represents the arbitrary value from the range
of [0, 1] and AP implies the probability of awareness. The
CSA was adapted and is utilized in FS by suggesting a
binary search model [21]. In the BCSA, the search space
was developed based on the Boolean lattice of n dimen-
sion and the essential solution is upgraded through the
corners of a hypercube, different from the typical CSA
where solution is upgraded from the continuous spaces.
The binary vector has been utilized for FS, whereas one
equivalent to either the feature that chosen for creating
the novel datasets, and or else 0. The idea of OBL has
been employed the fl variable from the BCSA to prevent
trapping from the local optimal and for enhancing the
quality of resultant solution by attaining a balance among
exploration as well as exploitation and obtain effective
solution. The variable fl is initiated in the BCSA accord-
ing to the OBL instead of utilizing an arbitrary initiation
whichmight be far from the optimum global solutions and
is made by:

x = a + b − x, (3)

Whereas x represent the opposite number and x ∈ R
denotes a real number determined on range of x ∈[ a, b] .
While a = 0 and b = 1 Eq. (3) becomes

x = 1 − x, (4)

While there is a point P(x1, x2, . . . . . . xn) in n dimension
coordinate and x1, x2, . . . . . . . . . , xn ∈ R later, the opposite
point P is determined as its coordinates x1, x2, . . . , xn:

xi = ai + bi − xi i = 1, . . . . . . . . . , n (5)

In such cases, have 2 values, x represent initial arbitrary
value in [ a, b] and x denotes the opposite values of x.
They calculate f (x) & f (x) in all the iterations of OBCSA,
later, employ on the evaluation function g if g(f (x)) ≥
g(f (x)) select x or else select x. Consequently, the fl would
be in range: fl ∈[ flmin, flmax]. The opposite number fl can
be determined by:

fl = flmin + flmax − x, (6)

Later, evaluate the fitness for the first fl value and the
fitness for fl in all the iterations. When fitness(fl) ≥
fitness(fl), they select fl, or else fl would be selected. The
stages of presented method can be given in the following.
Step1: The count of crows is nc = 25, flmin =

0.1, flmax = 1.8,AP = 0.3, and the maximal number of
iterations is tmax = 100.
Step2: The position that represent the features are made

by U(0, 1).

Step3: The fitness function (FF) can be determined by

Fitness = C+W×
(
1 − Fall

Fsub

)
,

(7)

Whereas C represent the classification performance, W
represent the weighted factors in the range of zero and
one, Fall represent the overall amount of features and Fsub
signifies the length of elected feature.
Step4: The position of the crows are upgraded as Eq. (2)
Step5: Steps 3 & 4 are repetitive till a tmax is attained.

Process involved in OSAE based classification model
At the time of classification process, the chosen features
are passed to the OSAE model. AEs have been unsuper-
vised ANN utilized to representation learning. The AE
structure has been planned for imposing a bottleneck
from the network which forces a compressed knowledge
illustration of the input. So, the correlation among the
input features is learned and recreated. AEs are encoding-
decoding frameworks. The encoding map the original
input x to hidden layer that has been regarded as latent
space representation. The decoding then regenerates this
latent representation as to x̂. The encoder as well as
decoder models are determined in Eqs. (8) and (9) corre-
spondingly

h = σ (Wx + b) , (8)

X = σ
(
W

′
h + b

′)
, (9)

where x = (x1, x2, . . . xn) signifies the input data vec-
tor, h = (h1, h2, . . . hn) refers the low dimension vector
reached in the hidden layer, and x̂ = (̂x1, x̂2, . . . x̂n) rep-
resents the recreated input.W andW ′ defines the weight
matrices, b and b′ demonstrated the bias vectors, and
σ denotes the sigmoid activation function, for instance,
σ = 1

1+e−x . It can utilize theMSE function as the recreated
error function amongst h and X:

E = 1
N

N∑
i=1

‖x̂i − xi‖2 (10)

Overfitting has been common challenge which occurs if
trained AE network. An effectual manner for solving this
issue is by implementing a weight penalty to cost function:

E = 1
N

N∑
i=1

1
2

‖x̂i − xi‖2 + λ

2

(
‖W‖2 +

∥∥∥W ′∥∥∥
2
)

(11)

where λ refers the weight attenuation coefficients. More-
over, a sparse penalty term has been presented from the
AE hidden layer for achieving optimum feature learning
in sparse constraint and keep a condition in which the
AE copies the input data to outcome [22]. Considering
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p̂j represents the average activation of hidden layer neu-
ron, it can be determined as p̂j = 1

N �N
i=1hj(xi), and ρ

refers the sparsity proportion, frequently a small positive
value nearby 0. For achieving sparsity, it can be restricted
to ρ̂j = ρ, and the Kullback-Leibler (KL) divergence was
established for the loss function as regularization term:

KL(ρ̂ ‖ ρ) =
∑K

j=1
ρlog

(
ρ

ρj

)
+ (1 − ρ) log

(
1 − ρ

1 − ρj

)
,

(12)

where K stands for the number of hidden neurons. There-
fore, the loss function of sparse AE now has 3 parts:
the MSE, weight attenuation, and sparsity regularization
parts:

E = 1
N

∑N

i=1
1
2

‖xi − xi‖2 + λ

2

(
‖W‖2 +

∥∥∥W ′∥∥∥
2
)

+ βKL(ρ̂||ρ),
(13)

where β refers the sparsity regularization parameter. Also,
it can stack various sparse AEs for achieving improved fea-
ture learning. The framework entails linking the encoder
to input layers of the next sparse AE, so make sure the
network gains optimum representation learning. Figure 2
depicts the framework of SAE.
During this analysis, the SSAE network is presented. In

the SSAE network, the hidden layer of the earlier sparse
AE serves as input to the next sparse AE. The last hidden
layer is then linked to the oftmax classifier that carries out
the classification. So, the presented SSAE network con-
tains train sparse AEs and a Softmax classifier. The BP was
implemented for fine-tuning the parameter of the total
network with the trained samples and their labels. The
fine-tuning stage assumes the many layers of the network

Fig. 2 Structure of SAE

Table 1 Best cost analysis of OBCSA-FS model

Methods No. of Selected Features Best Cost

OBCSA-FS 15 0.07462

BCSA-FS 24 0.08412

EHO-FS 36 0.09321

GSO-FS 40 0.09468

ACO-FS 48 0.09741

as one model. Considering {y1, y2, . . . , ym} implies the
target variable of the trained data, the cost function of the
whole network is determined as:

E = − 1
m

[∑m

i=1

∑N

j=1
1

{
yi = j

}
log

eθTi xi

�N
l=1e

θTl xi

]
,

(14)

where 1{•} indicates the indicator function, for instance,
1{yi = j} = 1 if y = 1, and 1{yi = j} = 0 if y �= j,N implies
the number classes, and θi represents the weight matrix
associating the ith output unit. In addition, it can employ
the EO technique for optimizing the SSAE parameter, for
instance, an optimum weight as well as bias values. The
selection of weights as well as bias are vital from trained
robust NNs.
The parameter optimization of SAE model takes place

using the EO algorithm [23]. It follows dynamic mass bal-
ance system that runs on control volume. An arithmetical
expression is utilized for representing a mass balance to
determine the concentration of a non-reactive constituent
under the dynamic environments of control volume. This
expression is a function with their several processes under
the different kinds of source and sink. The entire descrip-
tion of the EO approach can be explained by the following:
The haphazard population (primary concentration) is ini-

Fig. 3 Best cost analysis of OBCSA-FS model
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tiated by standard distribution depending on amount of
particles and dimensional in provided search region:

Cinitial
i = Cmin+randi (Cmax − Cmin) i = 1, 2, . . . , n

(15)

where as Cinitial
i represent vector of early concentration of

ith particles, Cmin and Cmax represents lower and upper
bounds, randi indicates uniform arbitrary number from
the range of zero and one and n denotes the size of
population.

In order to define the equilibrium state (global opti-
mal), a pool of 4 optimum to this point candidates should
be found along with other particles using a concentration
equivalent to arithmetical mean of these 4 particles. Thus
particles together procedure a pool vector as follows

−→
C eq.pool =

(−→
C (1),

−→
C (2),

−→
C (3),

−→
C (4),

−→
C eq(ave)

}
(16)

In the evolution phase, initial particle updates its con-
centration in initial generation according to on −→

C eq(1)
and in next generation, then upgrading might takes place

Fig. 4 Confusion matrix of OBCSA-OSAE model with distinct runs
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Table 2 Result analysis of OBCSA-OSAE model with different measures

No. of Runs Precision Recall Accuracy F-Score MCC Error Rate

Run-1 0.9808 0.9212 0.9123 0.9500 0.6143 0.0877

Run-2 0.9800 0.9346 0.9235 0.9568 0.6414 0.0765

Run-3 0.9780 0.9498 0.9352 0.9637 0.6697 0.0648

Run-4 0.9748 0.9558 0.9376 0.9652 0.6674 0.0624

Run-5 0.9842 0.9546 0.9450 0.9692 0.7230 0.0550

Run-6 0.9868 0.9438 0.9376 0.9648 0.7069 0.0624

Run-7 0.9850 0.9563 0.9473 0.9704 0.7335 0.0527

Run-8 0.9860 0.9568 0.9486 0.9712 0.7414 0.0514

Run-9 0.9896 0.9548 0.9500 0.9719 0.7565 0.0500

Run-10 0.9882 0.9531 0.9473 0.9704 0.7431 0.0527

Average 0.9833 0.9481 0.9384 0.9654 0.6997 0.0616

on −→
C eq(ave). Then, all the particles with each candidate

solution are upgraded until the completion of evolution
process.
The exponential word F displayed in Eq. (3) helps EO

method by attaining an appropriate balance among inten-
sification and diversification. λ represent an arbitrary
number from the range zero and one for controlling the
turn-over rate in actual control volume.

−→
F = e−

−→
λ (t−t0) (17)

Whereas t represents the amount of iteration (Iter) as
follows:

t =
(
1 − Iter

Max−iter

) (
a2

Iter
Max−iter

)
, (18)

In which Iter = current iteration, Max_iter = maxi-
mum iteration and parameters a2 is used for controlling
exploitation capability of EO [24]. For ensuring the con-
vergence when improving local and global search capabil-
ity of the method:

⇀
t0 = 1

⇀

λ

ln
(

−a1sign
(

⇀r − 0.5
) (

1 − e−
⇀
λ t

])
+ t, (19)

In which a1 & a2 is utilized for controlling global as well
as local search capability of EO method. The sign(�r− 0.5),
is accountable for the way of exploitation and exploration.
In EO, the a1 & a2 values are selected to be 2 and 1
correspondingly.
By replacing Eq. (19) in Eq. (17), the equation would

become:
⇀

F = a1sign
(

⇀r − 0.5
) [

e−
⇀
λ t − 1

]
, (20)

The generation rate in EO is employed for improving
exploitation as a function of time. The initial order expo-

nential decay procedure in the method of generation rate
of multi-purpose models:

⇀

G = ⇀

G0e−
⇀

k (t−t0) , (21)

Whereas G0 = first value, k = decay variable.
Lastly, the generation rate expression assumes k = λ:

⇀

G = ⇀

G0e−
⇀
λ(t−t0) = ⇀

G0
⇀

F 0 , (22)

⇀

G0 = G
⇀

CP
(

⇀

Ceq − ⇀

λ
⇀

C
)
, (23)

G
⇀

CP =
(
0.5r1, r2 ≥ 0
0, r2 < 0 , (24)

Let r1, r2 be the 2 arbitrary numbers from the range of [0,
1] and GCP variable is for controlling generation rate.
Based on the above equation, the last upgrading

equation of concentration (particles) is determined by:

⇀

C = ⇀

Ceq +
(

⇀

C − ⇀

Ceq

)
⇀

F +
⇀

G
⇀

λV

(
1 − ⇀

F
)
, (25)

The upgrading equation has 3 terms: initial term is an
equilibrium concentration; the next term is used to global
search and last term has been accountable to local search
for attaining solution more precisely. In order to optimally
adjust the parameter of the SAE algorithm, the EO model
is utilized and the thorough functioning can be given as
follow. The training method of the SAE algorithm is per-
formed via a FF. Additionally, ten-fold cross-validation
procedure is used for evaluating the FF. In ten-fold CV,
the training databases are arbitrarily segmented to a set
of ten mutually exclusive subsets of almost equivalent size
whereas 9 subsets are utilized for training the information
and the residual one is employed for testing the informa-
tion. This processes are repetitive for the collection of ten
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Fig. 5 Result analysis of OBCSA-OSAE model with different runs
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Fig. 6 ROC analysis of OBCSA-OSAE model

iterations that the subsets utilize for testing the method.
The FF is represented as 1 − CAvalidationof the ten-fold
CVmethod in the training data, as determined in Eq. (26).
As well, a solution with maximal CAvalidation results in
minimum fitness value.

Fitness = 1 − CAvalidation, (26)

CAvalidation = 1 − 1
10

∑10

i=1
| yc
yc + yf

| × 100 , (27)

Whereas, yc & yf indicates the amount of true and false
classification. Lastly, the hyperparameter included in the
SAE algorithm is optimally picked up by the EO method
in which the classification performances get enhanced.

Experimental validation
The performance validation of the OBCSA-OSAE model
takes place using a data set collected from an obstetrics
and gynecology hospital in Hebei province during 2020-
2021. It comprises 11000 instances with a total of 149
features. Among the available instances, a set of 1042 sam-
ples comes under the presence of PPH. As the trial and
error we performed the test and train with variable size to
data starting from 50 percent of test and same amount of
training data. Generally machine learning to need a huge
dat to train the algorithmm results are displayed with The
best cost analysis of the OBCSA-FS with existing tech-
niques are demonstrated in Table 1 and Fig. 3. The results
demonstrated that the GSO-FS and ACO-FS techniques

have showcased ineffective outcomes with the maximum
best cost of 0.09468 and 0.09741 respectively. In line with,
the EHO-FS and BCSA-FS techniques have obtained a
moderate best cost of 0.09321 and 0.08412 respectively.
But the OBCSA-FS technique has accomplished better
outcomes with the least best cost of 0.07462.
The confusion matrix produced by the OBCSA-OSAE

technique on the execution of ten dissimilar runs is illus-
trated in Fig. 4. On the test run-1, the OBCSA-OSAE
technique has classified 9713 and 862 into PMBS and
Normal classes respectively. Also, on the test run-3, the
OBCSA-OSAE method has classified 9458 and 829 into
PMBS and Normal classes correspondingly. Besides, on
the test run-6, the OBCSA-OSAE algorithm has classified
9398 and 916 into PMBS and Normal classes respectively.

Table 3 Comparative analysis of OBCSA-OSAE model with
existing methods in terms of different measures

Methods Accuracy Recall Precision F-Score MCC

RF 0.912 0.747 0.937 0.830 0.630

GBDT 0.919 0.655 0.736 0.690 0.670

XGB 0.916 0.739 0.878 0.800 0.660

SVM 0.923 0.748 0.937 0.830 0.640

EL-HC 0.907 0.656 0.953 0.780 0.650

EL-SC 0.932 0.697 0.847 0.760 0.690

OBCSA-OSAE 0.938 0.948 0.983 0.965 0.700
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At the same time, on the test run-8, the OBCSA-OSAE
approach has classified 9508 and 942 into PMBS and Nor-
mal classes respectively. Eventually, on the test run-10, the
OBCSA-OSAE system has classified 9491 and 929 into
PMBS and Normal classes correspondingly.
Table 2 and Fig. 5 tabulates the overall classification

results analysis of the OBCSA-OSAE technique under ten
runs. The OBCSA-OSAE technique has gained effectual
outcomes under every run.

Result analysis of OBCSA-OSAEmodel with
different runs
With run-1, the OBCSA-OSAE technique has obtained
precision, recall, accuracy, F-score, MCC, and error rate
of 0.9808, 0.9212, 0.9123, 0.9500, 0.6143, and 0.0877.
Similarly, with run-3, the OBCSA-OSAE methodology
has attained precision, recall, accuracy, F-score, MCC,
and error rate of 0.9780, 0.9498, 0.9352, 0.9637, 0.6697,
and 0.0648. Followed by, in run-6, the OBCSA-OSAE
approach has obtained precision, recall, accuracy, F-score,
MCC, and error rate of 0.9868, 0.9438, 0.9376, 0.9648,
0.7069, and 0.0624. Finally, with run-10, the OBCSA-
OSAE approach has obtained precision, recall, accuracy,
F-score, MCC, and error rate of 0.9882, 0.9531, 0.9473,
0.9704, 0.7431, and 0.0527.
The ROC analysis of the OBCSA-OSAE technique is

offered in Fig. 6. The figure shows that the OBCSA-OSAE
technique has accomplished effectual outcomes with a
higher ROC of 98.3324%.
Finally, a brief comparative result analysis of the

OBCSA-OSAE technique with existing ones is made in
Table 3 [25]. The accuracy analysis of the OBCSA-OSAE
technique with compared methods is provided in Fig. 7.
The figure displays that the EL-HC, RF, XGB, and GBDT
techniques have moderately closer accuracy values. At the
same time, the SVM and EL-SC techniques have obtained
slightly improved accuracy values. However, the OBCSA-
OSAE technique has outperformed the other techniques
with a maximum accuracy of 0.938.
The recall, precision, and F-score analysis of the

OBCSA-OSAE approach with related techniques are
given in Fig. 8. The figure demonstrated that the EL-
HC, RF, XGB, and GBDT methods have outperformed
moderately closer recall, precision, and F-score values.
In addition, the SVM and EL-SC methods have reached
somewhat enhanced recall, precision, and F-score values.
Finally, the OBCSA-OSAEmethodology has exhibited the
other systems with higher recall, precision, and F-score of
0.948, 0.983, and 0.965.
The MCC analysis of the OBCSA-OSAE technique

with compared methods is provided in Fig. 9. The figure
depicts that the EL-HC, RF, XGB, and GBDT manners
have moderately closer MCC values. Simultaneously, the
SVM and EL-SC approaches have somewhat superior

Fig. 7 Accuracy analysis of OBCSA-OSAE model with existing
techniques

MCC values. Lastly, the OBCSA-OSAE algorithm show
the other techniques with the maximal MCC of 0.700.
From these result analysis, the OBCSA-OSAE technique
has accomplished maximum PPH prediction outcomes.

Conclusion
In this study, an effective OBCSA-OSAE technique was
derived for the detection and classification of PPH. The
proposed OBCSA-OSAE technique encompassed two
major stages, namely selection of features and classifi-
cation. Primarily, the OBCSA technique was utilized to
optimally select a subset of features. Then, the EO algo-
rithm served to optimally choose the parameters involved
in the SAE model. Finally, the SAE model was used for the
classification of PPH. For showcasing the improved per-
formance of the OBCSA-OSAE approach was varied out

Fig. 8 Comparative analysis of OBCSA-OSAE model with different
measures
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Fig. 9MCC analysis of OBCSA-OSAE model with existing approaches

on the benchmark data set. The experimental outcomes
highlighted that the OBCSA-OSAE technique has demon-
strated the other techniques featured in terms of different
evaluation parameters. In future research, the clustering
process could be included to handle massive amounts
of PPH data and improve classification outcomes.In the
future, we would like to analyze on the time complexity of
the algorithm comparing the various parameters.
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