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Abstract

Background: While there is increasing interest in identifying pregnancies at risk for adverse outcome, existing
prediction models have not adequately assessed population-based risks, and have been based on conventional
regression methods. The objective of the current study was to identify predictors of fetal growth abnormalities
using logistic regression and machine learning methods, and compare diagnostic properties in a population-based
sample of infants.

Methods: Data for 30,705 singleton infants born between 2009 and 2014 to mothers resident in Nova Scotia,
Canada was obtained from the Nova Scotia Atlee Perinatal Database. Primary outcomes were small (SGA) and large
for gestational age (LGA). Maternal characteristics pre-pregnancy and at 26 weeks were studied as predictors.
Logistic regression and select machine learning methods were used to build the models, stratified by parity. Area
under the curve was used to compare the models; relative importance of predictors was compared qualitatively.

Results: 7.9% and 13.5% of infants were SGA and LGA, respectively; 48.6% of births were to primiparous women
and 51.4% were to multiparous women. Prediction of SGA and LGA was poor to fair (area under the curve 60–75%)
and improved with increasing parity and pregnancy information. Smoking, previous low birthweight infant, and
gestational weight gain were important predictors for SGA; pre-pregnancy body mass index, gestational weight
gain, and previous macrosomic infant were the strongest predictors for LGA.

Conclusions: The machine learning methods used in this study did not offer any advantage over logistic
regression in the prediction of fetal growth abnormalities. Prediction accuracy for SGA and LGA based on maternal
information is poor for primiparous women and fair for multiparous women.

MeSH terms: Pregnancy, Infant, Prediction, Birth weight, Fetal growth restriction, Fetal macrosomia

Background
Normal fetal growth is critical for both short- and
long-term health outcomes in neonates [1]. Infants at both
tails of the birthweight distribution are responsible for the
majority of morbidity and health care costs in neonates
born at term [2–4]. Being born small for gestational age

(SGA) is associated with seizures, respiratory distress,
hypoglycaemia, hyperbilirubinaemia, polycythaemia,
thrombocytopenia, and necrotizing enterocolitis [1]. The
perinatal morbidity associated with large-for-gestational age
(LGA) infants is related to prolonged and complicated
labour due to physical size and includes birth injury, the
need for operative vaginal delivery or caesarean section, as-
phyxia, and meconium aspiration [1]. Other postnatal prob-
lems commonly seen in LGA infants are hypoglycaemia,
polycythaemia, hyperbilirubinaemia, and respiratory dis-
tress. SGA and LGA infants on average have higher health
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care utilization, including during the delivery admission
and for readmissions within two weeks of delivery, than ne-
onates born appropriate for gestational age (AGA) [2].
The timely identification of pregnancies at risk for ad-

verse obstetrical and perinatal outcomes may be benefi-
cial to the women, the infants, and the health care
system. While there is increasing clinical and adminis-
trative interest in predicting which pregnancy will end
with an adverse outcome, few studies have used appro-
priate methods to assess population-based, and gesta-
tional age-dependent risks for adverse obstetrical and
perinatal outcomes. Studying predictive factors and de-
veloping prognostic models to determine the probability
of specific obstetrical and perinatal outcomes has im-
portant implications for preconception counselling,
antenatal assessment, intrapartum care and management
in the postpartum period, and for future reproductive
health. Prediction models may also help policy makers
to predict population changes in outcome frequency fol-
lowing changes in underlying risk factors.
The prediction of adverse obstetrical and perinatal

outcomes has been typically based on conventional re-
gression models and has not benefitted from newer
techniques such as machine learning. Machine learning
describes a methodology for developing algorithms that
learn from existing data to make predictions on new
data. In contrast to logistic regression, machine learning
methods such as random forest, boosting, or neural net-
works have no underlying distributional assumptions,
can handle complex relationships between predictors
and the outcome, as well as a larger number of predic-
tors, and require no model specification [5–7]. Machine
learning has become an integral component of many
technologies used in everyday life (from credit card
fraud detection to movie recommendations), but its use
in clinical and population health research has been rela-
tively limited. Reasons for this delayed uptake include
the limited availability of such methods in mainstream
statistical software packages, the specialized knowledge
that is required for their use, and clinician preference for
easily understood approaches over “black box” predic-
tion methods.
The objective of the present study was to use conven-

tional regression models and various machine learning
methods to identify predictors of fetal growth abnormal-
ities and compare their diagnostic properties (sensitivity,
specificity, positive and negative predictive value, accur-
acy, and area under the curve [AUC]) in a large
population-based sample of pregnant women from the
Canadian province of Nova Scotia.

Methods
A retrospective cohort of infants born between January
1, 2009 and December 31, 2014 to mothers resident in

the Canadian province of Nova Scotia (population in
2016: 923,598) was identified using the Nova Scotia
Atlee Perinatal Database (NSAPD). All singleton infants
with complete information on the predictors and out-
come were included in the study.

Data source
The NSAPD contains extensive information on routine
demographic variables, medical conditions, reproductive
history, delivery events, and neonatal outcomes for each
birth in the province. Data are entered into the NSAPD
by trained coders from standardized clinical forms. Nova
Scotia uses a standard Prenatal Record in addition to
forms completed at the time of the hospital delivery ad-
mission to document prenatal care and information rele-
vant to care and medical research. Its use throughout
pregnancy maximizes the completeness and accuracy of
information on items like demographics, health-related
behaviours, and pregnancy history. The NSAPD is ad-
ministered by the Reproductive Care Program of Nova
Scotia, which also maintains the coding system, and en-
sures the quality, integrity and security of the data. Peri-
odic abstraction and validation studies form an ongoing
data quality assurance program and have shown that the
data are accurate and reliable [8].

Outcomes
The primary outcome was birthweight for gestational
age category. Infants were categorized as SGA (< 10th
percentile of birthweight for gestational age and sex),
LGA (> 90th percentile of birthweight for gestational
age and sex), or AGA (10th to 90th percentile of
birthweight for gestational age and sex) relative to the
Canadian reference population published by Kramer
et al. [9]. Secondary outcomes included birthweight
for gestational age z-score and SGA defined as birth-
weight <3rd percentile for gestational age and sex.
Gestational age was determined based on an algo-
rithm that used information from the last menstrual
period, fetal ultrasound (where available), and the
neonatal physical examination [8].

Predictors
We used demographic and clinical characteristics re-
corded in the NSAPD that were available as predictors
at two time points: pre-pregnancy and at 26 weeks ges-
tation (Additional file 1: Table S1). Area-level income
quintile was calculated from the adjusted annual income
based on census data averaged over all households in a
census dissemination area. Area of residence was deter-
mined from the mother’s postal code at the time of preg-
nancy. Any smoking at 20 weeks or during the labour
admission was used as a proxy for smoking at 26 weeks.
Pre-pregnancy body mass index (BMI) was based on

Kuhle et al. BMC Pregnancy and Childbirth  (2018) 18:333 Page 2 of 9



height and weight information collected by self-report at
the first prenatal visit. Gestational weight gain at
26 weeks was estimated as

2þ ð13x Delivery weight‐Pre‐pregnancy weight‐2ð Þ
= Gestational ageat birth‐13ð Þ

assuming 2 kg gain in the first trimester (13 weeks)
and a steady rate of weight gain thereafter [10].

Statistical analysis
We developed prediction models for SGA (versus not
SGA) and LGA (versus not LGA) on predictors available
before pregnancy and at 26 weeks gestation, respectively,
using multiple logistic regression, as well as select ma-
chine learning methods: elastic net, classification trees,
random forest, gradient boosting, and neural networks.
Separate models were developed for primiparous and
multiparous women. Since machine learning algorithms
do not perform well in the presence of imbalance of the
predicted classes (e.g., 10% SGA vs. 90% non-SGA), the
minority class (SGA or LGA) was upweighted prior to
model development to achieve a 1:1 ratio of classes [11].
Observations with missing predictors were excluded
from the analysis. Models were implemented in R/RStu-
dio [12, 13] with the caret package [14].
Akaike Information Criterion-based model selection

was used to build the logistic regression models. The
Akaike Information Criterion is a method of model se-
lection that deals with the trade-off between the good-
ness of fit of the model and the complexity of the
model. We used the MASS package [15] to develop the
logistic regression models. Elastic net is a penalized re-
gression method that shrinks coefficients toward zero
[16]. Covariates that do not significantly improve the fit
of the model are shrunk until they are forced out of the
model entirely. This method is useful for reducing the
number of covariates included in the model and dealing
with groups of correlated covariates. We used the glmnet
package [17] to build the Elastic Net models. Classifica-
tion trees are developed via a nonparametric recursive
partitioning method whereby the sample is successively
divided by binary splits. At each successive step, splits
(node) are made at the cutpoint which maximizes the
discrimination between those who develop the outcome
(cases) and those who do not (non-cases). Each node is
a decision that creates a new “branch” in the “tree”.
Once no more divisions can be made, a terminal node is
reached and a prediction is made. We used the rpart
package [18] to build the trees. A random forest is a
collection of decision trees, each constructed in a boot-
strapped sample and from a random subset of the pos-
sible predictors at each node to make a prediction. The
mode of these predictions is the final prediction of the

model. Random forests are used to reduce variance and
overfitting associated with decision trees [5]. We used
the randomForest package [19] to develop the random
forest models. Gradient boosting repeatedly applies a
classification algorithm to a weighted version of the
training data, more heavily weighting those observations
that previous iterations have frequently misclassified [7].
A vote of the predictions for each iteration is used to
create a final prediction. This method attempts to give
more attention to those data points that are difficult to
classify. We used the gbm package [20] to build the gra-
dient boosting models. Neural Networks are composed
of layers of many simple predictive functions that are
connected via weights. These weights are determined by
repeatedly comparing the output of the network to the
training data set and adjusting. This collection of pre-
dictive functions is often compared to the way neurons
of the brain are connected to make complex decisions.
We used the nnet package [21] to build the neural net-
work models.
Data was randomly assigned to a training (80%) and a

testing (20%) data set. Ten-fold cross validation in the
training data was used to develop the prediction models.
The training parameter grids and parameters used for
each method are shown in Additional file 2: Table S2;
the AUC in the training data is shown in Additional file 3:
Table S3. The AUC and accuracy of predictions in the
test data were used to compare the models generated by
the different methods. The relative importance of pre-
dictors was compared qualitatively between methods
using variable importance plots.

Ethics
The Reproductive Care Program of Nova Scotia and the
Research Ethics Board of the IWK Health Centre (File #
1015714) provided data access approval and ethics ap-
proval, respectively. The need for informed consent for
this database-based study was waived as per the Nova
Scotia Personal Health Information Act. All procedures
performed were in accordance with the ethical standards
of the institutional research committee and with the
Tri-Council Policy Statement: Ethical Conduct for Re-
search Involving Humans, December 2014.

Results
Over the study period from 2009 to 2014, there were
49,604 pregnancies in women residents of Nova Scotia
that resulted in a singleton live birth after 26 weeks ges-
tation; for 30,705 pregnancies, complete information on
all variables was available, and these pregnancies were
included in the study sample. Most exclusions (n =
13,161) were due to missing pre-pregnancy weight, preg-
nancy weight, or both.
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7.9% and 13.5% of births were SGA and LGA, respect-
ively; 48.6% of pregnancies were to primiparous women
and 51.4% were to multiparous women. The predictors are
summarized by birthweight for gestational age category in
Table 1. The most pronounced differences compared to
AGA infants were seen for smoking (higher in SGA),
pre-pregnancy BMI (higher in LGA), and gestational weight
gain (highest in LGA and lowest in SGA groups).
Tables 2 and 3 show the AUC, accuracy, and the most

important predictors for SGA and LGA models, respect-
ively. For both SGA and LGA, the predictions were poor

(AUC 0.6–0.7) for primiparous women and fair (AUC
0.7–0.8) for multiparous women, irrespective of the
method used. Within time point and parity strata, the dif-
ferences in AUC between the methods were negligible
(confidence intervals for the AUC estimates were approxi-
mately ±0.03). The predictions improved in the order
Primipara/Pre-Pregnancy, Primipara/26 weeks, Multipara/
Pre-Pregnancy, Multipara/26 weeks. The ROC curves for
each model can be found in Additional file 4: Figure S1,
Additional file 5: Figure S2, Additional file 6: Figure S3,
Additional file 7: Figure S4, Additional file 8: Figure S5,

Table 1 Sample characteristics by parity and birthweight for gestational age category (N = 30,705)

Predictors Primiparae Multiparae

AGA SGA LGA AGA SGA LGA

Sociodemographics

Maternal age [years] 27.2 (5.7) 26.9 (6.0) 27.3 (5.5) 30.3 (5.2) 29.8 (5.5) 31.1 (4.9)

Common-law/married 66% 63% 67% 79% 68% 84%

Area-level income quintiles 18/22/23/22/15% 22/21/24/20/13% 16/23/22/24/15% 17/21/23/22/17% 24/22/22/18/14% 17/19/24/22/18%

Urban residence 66% 63% 67% 79% 68% 84%

Pregnancy risk factors

Smoking before pregnancy 25% 37% 20% 24% 47% 15%

Pre-pregnancy BMI [m/kg2] 25.5 (6.1) 24.9 (6.4) 27.7 (6.8) 26.4 (6.4) 24.9 (6.0) 28.8 (7.2)

Pre-existing hypertension 1% 2% 2% 1% 2% 2%

Pre-existing diabetes 1% 1% 2% 1% 1% 3%

Past pregnancy history

Previous gestational diabetes – – – 3% 2% 5%

Previous child with BW < 2500 g – – – 7% 19% 3%

Previous child with BW > 4080 g – – – 9% 3% 31%

Previous caesarean section – – – 24% 23% 29%

Previous preterm delivery
< 29 wks

– – – 1% 1% 1%

Previous preterm delivery
29–32 wks

– – – 1% 2% 1%

Previous preterm delivery
33–36 wks

– – – 5% 7% 4%

Previous death of neonate
≥500 g

– – – 1% 1% 0%

Current pregnancy

Fetal male sex 51% 54% 52% 51% 52% 50%

Weight gain at 26 wks [kg] 8.9 (3.3) 7.9 (3.1) 10.3 (3.8) 7.8 (3.2) 6.7 (3.2) 8.8 (3.5)

Smoking during pregnancy 15% 27% 9% 19% 41% 10%

Substance use in pregnancy 3% 5% 2% 2% 4% 1%

Gestational diabetes 4% 6% 8% 5% 5% 10%

Pregnancy-induced hypertension 2% 5% 2% 1% 2% 1%

Psychiatric disorder 11% 13% 11% 12% 14% 10%

Numbers are presented as mean (standard deviation) or proportions as applicable
Abbreviations: AGA appropriate for gestational age, BMI body mass index, BW birthweight, LGA large for gestational age, Pre-P pre-pregnancy, SGA small for
gestational age, wks weeks
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Additional file 9: Figure S6, Additional file 10: Figure S7
and Additional file 11: Figure S8.
The most important predictors for each time point

and stratum were similar between methods. Smoking, a
previous LBW infant, and gestational weight gain were
consistently identified as strong predictors of SGA, while
pre-pregnancy BMI, gestational weight gain, and a previ-
ous infant > 4080 g were the strongest predictors of
LGA across all methods. The addition of information on
the size of a previous infant (either < 2500 g or > 4080 g)
provided the greatest gain in information when going
from primiparous to multiparous models. Weight gain at
26 weeks in turn was an important predictor when going
from pre-pregnancy to 26 weeks.
In a secondary analysis, we also developed prediction

models for SGA defined as birthweight for gestational
age and sex <3rd percentile, as well as for a continuous

version of the outcome (birthweight for gestational age
z-score), but these models did not offer any advantage
over the models for the primary outcomes.

Discussion
We attempted to identify predictors of fetal growth abnor-
malities using population-based data with logistic regres-
sion and selected machine learning and compare their
diagnostic properties. Rates of SGA and LGA live births
observed in this study were consistent with nationally re-
ported rates [22]. We found that the predictions were
poor to fair for both SGA and LGA. Predictions were best
for multiparous women at 26 weeks and poorest for prim-
iparous women pre-pregnancy. None of the prediction
methods offered any advantages over the others in terms
of AUC. Smoking, a previous LBW infant, and gestational
weight gain were consistently identified as strong

Table 2 Area under the curve, accuracy, and the three most important predictors for the prediction of small for gestational age
(SGA) birth using logistic regression and five machine learning methods pre-pregnancy and at 26 weeks in primiparous and
multiparous women

Pre-pregnancy 26 weeks

LR EN CT RF GB NN LR EN CT RF GB NN

SGA - Primiparae

Area under the curve 0.592 0.598 0.569 0.601 0.609 0.600 0.662 0.661 0.627 0.650 0.665 0.660

Accuracy 0.839 0.845 0.815 0.841 0.851 0.841 0.847 0.849 0.829 0.844 0.846 0.849

Maternal age ● ● ● ●

Area-level income quintile ●

Pre-pregnancy smoking ● ● ● ● ● ● ● ●

Pre-pregnancy BMI ● ● ● ● ● ● ●

Pre-existing hypertension ● ● ● ●

Gravidity ● ●

Weight gain at 26 wks ● ● ● ●

Smoking in pregnancy ● ● ● ●

Pregnancy-induced hypertension ● ●

SGA – Multiparae

Area under the curve 0.741 0.744 0.711 0.715 0.728 0.741 0.771 0.771 0.713 0.745 0.766 0.772

Accuracy 0.905 0.903 0.916 0.897 0.902 0.906 0.912 0.912 0.801 0.903 0.911 0.914

Pre-pregnancy smoking ● ● ● ● ● ●

Pre-pregnancy BMI ● ● ● ● ● ● ●

Pre-existing hypertension ●

Previous LBW infant ● ● ● ● ● ● ● ●

Previous infant > 4080 g ● ● ● ● ●

Previous preterm delivery < 29 wks ●

Weight gain at 26 wks ● ● ● ●

Smoking in pregnancy ● ●

Pregnancy-induced hypertension ● ●

Abbreviations: BMI body mass index, CT classification tree, EN elastic net, GB gradient boosting, LBW low birth weight, LR logistic regression, NN neural network, RF
random forest, wks weeks
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predictors for SGA, while pre-pregnancy BMI, gestational
weight gain, and a previous infant > 4080 g were the stron-
gest predictors for LGA.
Most published models are based on fetal ultrasound

measurements at some point during pregnancy or include
biochemical markers. The current study predicted SGA and
LGA births based on readily available clinical characteristics
that may be used in situations where imaging or laboratory
testing is not available or has not been utilized. We consid-
ered pre-pregnancy and late 2nd trimester factors available
in the NSAPD to evaluate their predictive ability prior to
the third trimester, when there is an increased risk of obstet-
rical complications associated with SGA and LGA that alter
obstetrical management decisions. Prediction models in the
literature that are based on maternal characteristics have an
AUC of about 0.70 for SGA and LGA [23–25]. Ultrasound
evaluation of fetal size in the third trimester is superior in
terms of the AUC (0.80–0.90 for SGA and LGA) [26–29]

but repeated evaluations of fetal growth have not been
shown to provide additional information compared to a sin-
gle measurement before before 33 weeks gestation [27].
The use of ultrasound biometry and corresponding growth
curves in the prediction of estimated fetal size are limited
by the populations from which they were derived, as well as
by maternal body habitus and gestational age; as a result,
fetal biometry has an error in the range of 10% to 15%, es-
pecially at the two extremes of size [30]. Integrating mater-
nal characteristics with ultrasound information and
maternal serum biomarkers has been proposed in the clari-
fication of risks for SGA and LGA [31]. Models incorporat-
ing first trimester ultrasound parameters, biochemical
indices, and maternal characteristics had AUCs up to 0.73
for both SGA [23, 32, 33] and LGA [23, 25, 34]. Our ap-
proach of stratifying by parity and timing allowed for more
flexibility in the selection of predictors for the separate
models. The diagnostic properties of the models for

Table 3 Area under the curve, accuracy, and the three most important predictors for the prediction of large for gestational age
(LGA) birth using logistic regression and five machine learning methods pre-pregnancy and at 26 weeks in nulliparous and
multiparous women

Pre-pregnancy 26 weeks

LR EN CT RF GB NN LR EN CART RF GB NN

LGA - Primiparae

Area under the curve 0.592 0.587 0.563 0.576 0.587 0.594 0.702 0.705 0.675 0.673 0.697 0.705

Accuracy 0.826 0.827 0.800 0.824 0.832 0.827 0.843 0.834 0.780 0.834 0.839 0.842

Maternal age ● ● ●

Common-law/married ●

Pre-pregnancy smoking ● ● ● ●

Pre-pregnancy BMI ● ● ● ● ● ● ● ● ● ●

Pre-existing diabetes ● ● ● ● ● ● ●

Weight gain at 26 wks ● ● ● ● ●

Smoking in pregnancy ● ● ●

Pregnancy-induced hypertension ● ●

Gestational diabetes ●

LGA - Multiparae

Area under the curve 0.700 0.700 0.659 0.692 0.704 0.700 0.745 0.748 0.718 0.728 0.748 0.746

Accuracy 0.807 0.806 0.817 0.795 0.804 0.807 0.813 0.809 0.794 0.799 0.805 0.812

Maternal age ●

Pre-pregnancy smoking ● ●

Pre-pregnancy BMI ● ● ● ● ● ● ● ●

Pre-existing diabetes ● ● ● ● ●

Previous LBW infant

Previous infant > 4080 g ● ● ● ● ● ● ● ● ● ● ● ●

Previous death of neonate ≥500 g ● ●

Weight gain at 26 wks ● ● ● ● ●

Smoking in pregnancy ●

Abbreviations: BMI body mass index, CT classification tree, EN elastic net, GB Gradient boosting, LBW low birth weight, LR logistic regression, NN neural network, RF
random forest, wks weeks
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multiparous women are comparable to those of the models
integrating first trimester clinical, biochemical, and imaging
information, but predictions from the models for primipar-
ous women were considerably weaker.
Previous studies on the prediction of SGA and LGA

have commonly used logistic regression to develop
models. Our study was the first of which we are aware that
used and compared machine learning methods in the pre-
diction of fetal growth abnormalities. The advantages of
logistic regression models include the comparatively easy
implementation, the availability in all standard statistical
software packages, and short computation times. How-
ever, misspecification of the logistic regression model or
violation of its assumptions may result in biased results.
By contrast, the machine learning methods used in the
current study (with the exception of elastic net) make no
distributional assumptions, do not require a priori specifi-
cation of a model, and can consider complex relationships
between the predictors and the outcome. The fact that the
machine learning methods used in the current study did
not perform better than a conventional logistic regression
model indicates that the relationship between predictors
and the two outcomes may not be complex, and therefore
the strengths of machine learning methods over conven-
tional regression did not play a role. Several studies have
compared machine learning methods to conventional lo-
gistic regression for prediction for a variety of clinical con-
ditions, and the results regarding the diagnostic properties
of the models have shown mixed results [6, 35, 36], under-
lining that there is no overall “best” method for prediction
and that the choice of the optimal method is dependent
on the specific setting. Our findings should therefore not
discourage the use of machine learning methods in evalu-
ating other areas of clinical obstetrics and gynaecology.
Logistic regression models provide effect estimates (odds

ratios) that are easily interpretable, whereas machine
learning methods are often considered “black box”
methods as they do not readily provide the user with any
indication of the importance of individual predictors that
are used for the prediction output. Some machine learning
methods offer variable importance rankings that order
predictors in the model based on the loss of prediction ac-
curacy when they are removed from the model. These
rankings can give the user some indication of the relative
importance of the predictors. Previous studies using logis-
tic regression models have identified underweight, short
stature, inadequate gestational weight, pre-eclampsia,
smoking, maternal age under 18 or over 35, primigravidity,
and history of a SGA infant as strong risk factors for SGA
births [37–39], while maternal obesity, non-smoking, ma-
ternal age, high gestational weight gain, and multiparity
were identified as strongest predictors of macrosomia [40].
The highest ranked predictors of SGA and LGA based on
the variable importance rankings from the machine

learning methods used in the present study identified the
latter predictors but also highlighted some unusual predic-
tors such as previous preterm birth (SGA, pre-pregnancy
multiparity model, neural network) or previous death of a
neonate ≥500 g (LGA, pre-pregnancy multipara model,
neural network). Owing to the different algorithms used
with each method, predictor importance may differ greatly
between methods, and a high ranking of a predictor may
not necessarily translate into a high odds ratio for the
same variable in a conventional regression model.
The strengths of the study are the use of a comprehensive,

population-based perinatal database with a broad range of
high quality data. Our study was limited by the lack of an ex-
ternal validation, which may have resulted in overly optimis-
tic estimates of the diagnostic properties of the prediction
models. In addition, maternal BMI was based on
self-reported data, which may result in misclassification of
weight status; however, self-reported pre-pregnancy weight
has been shown to agree closely with measured weight [41].
Another limitation was the exclusion of a large number of
mothers with missing information (n= 18,899, 38%), in par-
ticular for BMI and gestational weight gain, which may have
led to a selection of women with higher BMIs in the analysis
sample as they may be more likely to have their weight and
height recorded. However, the proportion of SGA and LGA
was very similar in the included (SGA: 7.90%; LGA: 13.52%)
and excluded infants (SGA: 7.90%; LGA: 13.76%), which does
not support the latter hypothesis. Since a certain proportion
of SGA and LGA infants may be otherwise healthy, our pre-
diction models may identify some infants without associated
morbidity. Future research should examine if the predictors
examined in the current study can identify adverse outcomes
of SGA and LGA directly; such an assessment was beyond
the scope of this study. Despite the broad range of data, we
were limited by variables in the NSAPD, and were not able
to include information on factors such as racial origin, ultra-
sound biometry, or maternal serum biomarkers. Lastly, other,
more complex machine learning methods (such as Deep
Learning or Super Learners) than the ones used in the
current study may offer greater prediction accuracy.

Conclusions
Prediction of fetal growth abnormalities based on sociode-
mographic and clinical information is of limited value for
primiparous women, but prediction accuracy is fair for
multiparous women pre-pregnancy and at 26 weeks gesta-
tion. The machine learning methods used in the current
study did not offer any advantages over conventional lo-
gistic regression in the prediction of SGA and LGA status.
Smoking, a previous LBW infant, and gestational weight
gain were identified by most methods as key predictors
for SGA, while pre-pregnancy BMI, gestational weight
gain, and a previous infant > 4080 g were key predictors
for LGA.
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