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Abstract

Background: Greater epidemiologic understanding of the relationships among fetal-infant mortality and its
prognostic factors, including birthweight, could have vast public health implications. A key step toward that
understanding is a realistic and tractable framework for analyzing birthweight distributions and fetal-infant
mortality. The present paper is the second of a two-part series that introduces such a framework.

Methods: We propose estimating birthweight-specific mortality within each component of a normal mixture
model representing a birthweight distribution, the number of components having been determined from the data
rather than fixed a priori.

Results: We address a number of methodological issues related to our proposal, including the construction of
confidence intervals for mortality risk at any given birthweight within a component, for odds ratios comparing
mortality within two different components from the same population, and for odds ratios comparing mortality
within analogous components from two different populations. As an illustration we find that, for a population of
white singleton infants, the odds of mortality at 3000 g are an estimated 4.15 times as large in component 2 of a
4-component normal mixture model as in component 4 (95% confidence interval, 2.04 to 8.43). We also outline an
extension of our framework through which covariates could be probabilistically related to mixture components.
This extension might allow the assertion of approximate correspondences between mixture components and
identifiable subpopulations.

Conclusions: The framework developed in this paper does not require infants from compromised pregnancies to
share a common birthweight-specific mortality curve, much less assume the existence of an interval of
birthweights over which all infants have the same curve. Hence, the present framework can reveal heterogeneity in
mortality that is undetectable via a contaminated normal model or a 2-component normal mixture model.

Background
A recent report shows a slight decline in the rate of
infants with low birthweights (less than 2500 g) in the
United States, with a rate of 8.2 percent in 2007 com-
pared to 8.3 percent in 2006 [1]. While the rate for
extremely low (ELBW; <1000 g) and very low birth-
weights (VLBW; 1000-1500 g) was unchanged at 1.5
percent, the rate for moderately low birthweights
(MLBW; 1500-2500 g) declined from 6.8 to 6.7 percent
[1]. Data on the proportions of normal (NBW; 2500-
4000 g) and high birthweights (HBW; >4000 g) were not
provided. If confirmed in the final vital records data, the

decline in the low birthweight rate will be the first in
many years. National Center for Health Statistics
(NCHS) records indicate that low birthweight rates have
been rising since 1984, when the rate was 6.7 percent
[1].
Perinatal epidemiologists have long recognized birth-

weight as one of several factors related to fetal growth,
and ultimately, infant survival and development [2-4].
However, categories such as ELBW and VLBW, while
useful for descriptive purposes, are not completely satis-
factory for representing the birthweight distribution of a
population, much less assessing the relationship between
birthweight and fetal-infant mortality. First, cutoffs such
as 1500 g and 2500 g are arbitrary and introduce an
artificial discreteness to a naturally continuous phenom-
enon: presumably fetal-infant mortality risk decreases
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only incrementally as one moves from, for example,
2499 g to 2501 g. Second, there may still be heterogene-
ity at any fixed birthweight: some infants born at, say,
2499 g may be at higher risk than other infants born at
2499 g.
The preceding considerations motivate a new frame-

work for modeling birthweight distributions and fetal-
infant mortality. This is the second paper in a two-part
series that introduces such a framework. In the first
paper, we proposed a normal mixture model for birth-
weight distribution:

p f xj j j

j

k

( ; , ), 
=

∑
1

(1)

where k is the number of components, x is birth-
weight, pj is the fraction of births in component j, μj is
the mean of the birthweights in component j, sj is the
standard deviation of the birthweights in component j,
and f (x; μj, sj) is the probability density for a normal
distribution with mean μj and standard deviation sj.
What distinguished our proposal from the contaminated
normal model of Umbach and Wilcox [5] and the 2-
component normal mixture model of Gage and Ther-
riault [6] was that the number of components was not
fixed a priori but rather determined from the data using
the Flexible Information Criterion (FLIC) (Pilla and
Charnigo, Consistent estimation and model selection in
semiparametric mixtures, submitted). We also showed
how to construct confidence intervals for pj, μj, and sj

(1 <= j <= k) based on multiple samples from the same
population, even if those samples overlapped.
Here we consider estimating birthweight-specific mor-

tality curves within each component of the normal mix-
ture model in Equation (1). We begin by generalizing
Gage’s parametric mixtures of logistic regressions
(PMLR) technique [7] to accommodate a normal mix-
ture model with more than two components. We pro-
ceed to show how confidence bounds can be
constructed for birthweight-specific mortality curves.
We then provide formulas for estimating mortality odds
ratios comparing populations on the same component,
such as
odds of mortality at 2500 g in component 3 (white

heavy smoking population) divided by
odds of mortality at 2500 g in component 3 (white

general population),
or comparing components in the same population,

such as
odds of mortality at 1000 g in component 2 (white

heavy smoking population) divided by
odds of mortality at 1000 g in component 1 (white

heavy smoking population).

Being able to estimate the latter kind of odds ratio - in
other words, being able to assert that some infants in a
population are at higher risk than others, even when
they are of the same birthweight - is the main advantage
of modeling a birthweight distribution as we have pro-
posed, rather than using a contaminated normal model
[5] or a 2-component normal mixture model [6]. Thus,
our two-part series provides a modeling framework
through which heterogeneity in mortality can be
revealed that might otherwise remain undetected.

Results
1. Mortality risk estimation from a single sample
a. Description of the methodology
Gage developed a parametric mixtures of logistic regres-
sions (PMLR) technique to estimate mortality risk as a
function of birthweight within each of two components
in a normal mixture model describing a birthweight dis-
tribution [7]. Although PMLR was formulated for a 2-
component model, we generalize it to k components as
follows.
The risk function or birthweight-specific mortality

curve for component j (1 <= j <= k ) is

r x p x p x p xj j j j( ) [ ( )] exp[ ( )] / ( exp[ ( )]),= = +−logit 1 1 (2)

where x represents birthweight and pj(x) is a polyno-
mial whose coefficients must be estimated. By the law of
total probability [8], the risk function for the population
overall is

r x p f x p f xj j j j
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Gage took pj(x) to be a second-degree polynomial,
allowing the birthweight-specific mortality curves for
each of his two components to be U-shaped [7]. How-
ever, since our framework permits more than two com-
ponents, we are reluctant to assume that a U-shaped
pattern should prevail within every component. Thus,
we take pj(x) to be a fourth-degree polynomial, which
accommodates up to two changes in convexity for each
birthweight-specific mortality curve.
Since estimates of pj, μj, and sj (1 <= j <= k) are

required to calculate the Flexible Information Criterion
(FLIC) (Pilla and Charnigo, Consistent estimation and
model selection in semiparametric mixtures, submitted)
when determining the number of components, we may
assume that these estimates are now available. We then
employ the optimization (optim) procedure in version
2.3.1 of R (R Foundation for Statistical Computing,
Vienna, Austria, 2006) to estimate r1(x) through rk(x) by
maximum likelihood conditional on the estimates of pj,
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μj, and sj (1 <= j <= k). Thus, PMLR represents the sec-
ond half of a two-stage procedure for modeling birth-
weight distribution and fetal-infant mortality. Our R
code is available upon written request to the corre-
sponding author. Section I of [Additional file 1] provides
details on initial value specification for PMLR.
b. An illustrative example
We continue the example from Section 2a of Results
from the previous paper, involving a data set of size
50,000 from the NCHS Public-Use Perinatal Mortality
Data. This data set was a random sample from the
population of 202,849 white singletons who were born
(or experienced fetal death) from 2000 to 2002 and
whose mothers smoked heavily (at least twenty cigar-
ettes per day). Equation (5) in our previous paper shows
the estimates of pj, μj, and sj (1 <= j <= 4) from the
FLIC-selected 4-component model. Using these esti-
mates, we employed PMLR as described above to esti-
mate r1(x) through r4(x).
Figure 1a shows the results. The vertical axis is loga-

rithmic. Estimated birthweight-specific mortality curves
for the 4 components are in dashes. We suppress the
portions of each curve for birthweights more than three
component standard deviations away from the compo-
nent mean. The model-implied mortality curve, a
weighted average of estimated birthweight-specific mor-
tality curves for the four components, is in solid. This
curve estimates the population risk function, whose
form under the 4-component model is given by Equa-
tion (3) with k = 4. Empirical mortality, defined here to
consist of the crude mortality rates in 100 g bins, is
depicted with circles. Crude rates of zero due to extre-
mely small denominators are displayed near the bottom
of Figure 1a.
Birthweight-specific mortality appears roughly U-

shaped within component 3. The patterns for the other
components are decreasing rather than U-shaped,
although the decrease for component 2 plateaus in the
HBW range. The decrease for component 4 actually
becomes steeper in the HBW range, but this seems to
be an artifact: the proportion of births in component 4
is small, and there are rather few deaths at large birth-
weights, so estimating birthweight-specific mortality
within component 4 at large birthweights is difficult.
The model-implied mortality curve tracks empirical
mortality very closely when the denominators for the
crude rates are not too small.
c. Results from competing models for birthweight
distribution
We used the same data set to estimate birthweight-speci-
fic mortality curves for the lower residual and predomi-
nant distributions in a contaminated normal model
(Figure 1b) [5]. Since the estimated proportion of births
in the upper residual distribution was less than 1 in 8700,

we did not attempt to estimate a birthweight-specific
mortality curve for the upper residual distribution.
The model-implied mortality curve generally appears

reasonable, although there is an artifact at the threshold
of 1700 g, where the lower residual distribution termi-
nates. The contaminated normal model asserts that all
infants at any fixed birthweight greater than 1700 g (and
less than 5300 g, if one considers the upper residual dis-
tribution) have the same mortality risk. Moreover, since
the predominant distribution is virtually nonexistent in
the VLBW and ELBW ranges, the contaminated normal
model cannot detect heterogeneity in mortality risk at
any fixed birthweight in the VLBW and ELBW ranges.
We also estimated birthweight-specific mortality curves

for the primary and secondary distributions in a 2-com-
ponent normal mixture (Figure 1c) [6]. The model-
implied mortality curve appears reasonable except for the
pronounced downturn at 5100 g, which is an artifact of
the extremely small denominators above 5000 g.
The 2-component normal mixture can detect hetero-

geneity in the NBW range and parts of the MLBW and
HBW ranges. However, since the primary distribution is
virtually nonexistent in the VLBW and ELBW ranges,
the 2-component normal mixture cannot detect hetero-
geneity in those ranges.

2. Mortality risk estimation from multiple samples
a. Confidence bounds
To quantify uncertainty in the estimation of birth-
weight-specific mortality, we proceed as follows. First,
we draw Nrep samples from the population of interest,
where each sample consists of birthweight/mortality
outcome pairs. Second, we fit a k-component normal
mixture model to the birthweight data in each sample.
Third, we apply PMLR to the birthweight and mortality
outcome data in each sample, which yields estimated
birthweight-specific mortality curves for that sample.
Fourth, we use the Nrep sets of estimated birthweight-
specific mortality curves to create overall estimates of
the risk functions and accompanying confidence bounds,
as described below.
Let r x r x r xj j j N rep

∧ ∧ ∧
; ; ;( ), ( ), , ( )1 2  denote the estimated

birthweight-specific mortality curves for component
j (1 <= j <= k ) originating from the Nrep samples. An
overall estimate of the risk function for component j is

r x N r xj rep j s
s

N rep
∧ ∧= − −

=
∑( ) [ { ( )}].;logit logit1 1

1

(4)

The rationale for using the logit transformation in
Equation (4), as well as in the elements entering Equa-
tions (5) and (6) below, is described in Section II of
[Additional file 1].
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Fixing x = x0, we set θ = logit{ rj(x0)} and define
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denoting the “meta-sam-

ple” mean and standard deviation of   
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1 2, , , Nrep
,

we construct a confidence interval for θ via either

 
∧ ∧
+ −or C S Nrep/ (5)

or, preferably,
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+ − +or { / },B C S Nrep
(6)

where B
∧


is a bias adjustment and C is a constant

chosen so that the confidence interval has the desired
coverage probability (typically 95%).

If Equation (6) is used, we obtain B
∧


by simulation.

More specifically, we randomly generate birthweights

from p f xj j j
j

k ∧ ∧ ∧

=
∑ ( ; , ) 
1

, where p pk k k
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1 1 1, , , , , ,   

are the overall estimates of their respective parameters;
see Section 2c of Results from the previous paper. Then

we use r x r x r xk
∧ ∧ ∧
1 2( ), ( ), , ( ) from Equation (4) to ran-

domly generate corresponding mortality outcomes. This
yields a simulated data set consisting of birthweight/
mortality outcome pairs. Fitting a k-component normal
mixture model to the simulated birthweight data and
then applying PMLR to the simulated birthweight and

mortality outcome data, we obtain an “estimate” of 
∧ .

We create four more simulated data sets in the same
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(a) Estimated mortality in 4−component model
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(b) Estimated mortality in contaminated model
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(c) Estimated mortality in 2−component model
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(d) Confidence bounds for mortality in 4−component model

Figure 1 Mortality for White Singleton Infants with Heavily Smoking Mothers. (a) Estimated birthweight-specific mortality curves are
presented for each component of a 4-component normal mixture model, along with model-implied mortality (a superposition of the estimated
birthweight-specific mortality curves) and empirical mortality (crude rates in 100 g bins). The results are based on a single sample of size 50,000
from the population of white singletons born to heavily smoking mothers. (b) and (c) Corresponding results are displayed for a contaminated
normal model and a 2-component normal mixture model. (d) Estimated birthweight specific-mortality curves are presented for each component
of a 4-component normal mixture model, along with confidence bounds determined by Equations (6) and (7) with C0 = 4.0 and � = .2465
based on 25 samples of size 50,000.
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manner, recover the value of

∧∧

sim
for each, and then

define B
∧


as the average value of

| | 
∧∧ ∧

−sim
over the

five simulated data sets.
A confidence interval for rj(x0) is obtained by applying

the inverse logit transformation to the confidence inter-
val for θ. The above computations can be performed
simultaneously at a series of birthweights. Connecting
the resulting series of upper confidence limits produces
an upper confidence bound for the risk function in
component j, while connecting the resulting series of
lower confidence limits produces a lower confidence
bound.
As when constructing confidence intervals for pj, μj,

and sj (1 <= j <= k), we can accommodate overlap in
the Nrep samples by choosing the value of C in Equation
(6) according to the fraction of the underlying popula-
tion that each of the Nrep samples constitutes. Let C0

denote the value of C that would be chosen if this frac-
tion were negligibly small, and let C� denote the value
that would be chosen if this fraction were equal to �, a
positive number less than 1. In the previous paper, we
established the relationship

C C Nrep
Nrep

  = − −0 1 1{ ( ) }. (7)

b. Illustrative example
We continue the example from Section 2c of Results
from the previous paper, involving Nrep = 25 data
sets of size 50,000 from the NCHS Public-Use Peri-
natal Mortality Data. These data sets were random

samples from the aforementioned population of
202,849 white singletons whose mothers smoked
heavily.
Figure 1d displays overall estimates and confidence

bounds for the birthweight-specific mortality curves in a
4-component model for the birthweights of white single-
tons born to heavily-smoking mothers. We took C0 =
4.0 (see Section 3a of Results) and � = .2465 = 50,000/
202,849. Table 1 presents numerical results at selected
birthweights; the odds ratios are estimated as described
in Section 2c of Results.
Figure 1d reveals considerable uncertainty in estimat-

ing birthweight-specific mortality, especially in the HBW
range. However, the confidence bounds for components
2 and 4 have no overlap in the lower part of the NBW
range, indicating heterogeneity in mortality risk despite
the uncertainty in estimation. That the confidence
bounds are so wide is partly due to the large �, which
in turn is a consequence of the small population. Sec-
tion 3b of Results will present another example in
which the population is considerably larger and � is
much smaller.
c. Estimating odds ratios
To estimate an odds ratio comparing components in the
same population, such as
odds of mortality at 1000 g in component 2 (white

heavy smoking population) divided by
odds of mortality at 1000 g in component 1 (white

heavy smoking population),
we apply Equation (6) with the following modifica-

tions. Instead of identifying θ with logit{ rj(x0) }, we take
θ = logit{ rj1(x0) } - logit{ rj2(x0) }, where 1 <= j1, j2 <=
k. Then exp{θ} equals the mortality odds in component
j1 at birthweight x0 divided by the mortality odds in

Table 1 Mortality for White Singleton Infants with Heavily Smoking Mothers

Quantity @ 1000 g @ 2000 g @ 3000 g @ 4000 g

Risk in component 1:

logit-1{
∧ } [point estimate]

Confidence interval

110.1 (23.2,
392.2)

— — —

Risk in component 2: logit-1{
∧ } [point estimate] Confidence interval 460.3 (138.3,

819.2)
35.9 (16.9,
74.7)

16.2 (8.2, 31.5) 7.6 (2.3, 25.0)

Risk in component 3: logit-1{
∧ } [point estimate] Confidence interval — 41.3 (6.1,

232.1)
4.0 (0.7, 20.8) 2.4 (0.2, 29.6)

Risk in component 4: logit-1{
∧ } [point estimate] Confidence interval — — 4.7 (3.0, 7.2) 2.8 (0.3, 28.3)

Odds ratio, component 1 vs. component 2: exp{
∧ } [point estimate] Confidence

interval
0.15 (0.01, 2.46) — — —

Odds ratio, component 2 vs. component 3: exp{
∧ } [point estimate] Confidence

interval
— 0.87 (0.06,

12.7)
4.13 (0.41,
42.0)

3.19 (0.09,
115)

Odds ratio, component 2 vs. component 4: exp{
∧ } [point estimate] Confidence

interval
— — 3.51 (1.44,

8.56)
2.74 (0.14,
53.1)

Odds ratio, component 3 vs. component 4: exp{
∧ } [point estimate] Confidence

interval
— — 0.85 (0.19,

3.79)
0.86 (0.04,
21.1)

Mortality risks and odds ratios are estimated at selected birthweights, based on 25 samples of size 50,000 from the population of white singletons born to
heavily smoking mothers. Confidence intervals are constructed using Equations (6) and (7) with C0 = 4.0 and � = .2465.
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component j2. Hence, exp{
∧ } is an estimate of the odds

ratio, and

exp{ { / }}  
∧ ∧ ∧
+ − +or B C S Nrep

(8)

is a confidence interval.
To estimate an odds ratio comparing populations on

the same component, such as
odds of mortality at 2500 g in component 3 (white

heavy smoking population) divided by
odds of mortality at 2500 g in component 3 (white

general population),
we define θ1 = logit{rj(x0)} for the first population and

θ2 = logit{rj(x0)} for the second population. Then exp{θ1 -
θ2} equals the mortality odds in component j of the first
population at birthweight x0 divided by the mortality
odds in component j of the second population. Hence,

exp{ } 
∧ ∧

−1 2 is an estimate of the odds ratio, and

exp{ { / / }}     
∧ ∧ ∧ ∧ ∧ ∧

− + − + + +1 2

2 2

1 2 1 2or B B C S N S Nrep rep
(9)

is a confidence interval. Subscripts 1 and 2 in Equa-
tion (9) identify the populations to which the “meta-
sample” means, standard deviations, and bias adjust-
ments pertain.

3. Further illustrations
a. Simulation study to calibrate confidence intervals
We simulated 25 overlapping data sets of size 50,000,
the degree of overlap consistent with a population of
200,000, based on the specifications in Table 2. The
mixture density and the risk functions were chosen to
mimic the patterns actually observed for white single-
tons born to heavily-smoking mothers; see panel b of
Figure One from the previous paper and Figure 1d of
the present paper. For each of various C between 2.0
and 5.0, we used Equation (6) to form confidence inter-
vals for mortality risks at selected birthweights, namely
r1(μ1 - s1), r1(μ1), r1(μ1 + s1), r2(μ2 - s2), r2(μ2), r2(μ2 +
s2), r3(μ3 - s3), r3(μ3), r3(μ3 + s3), r4(μ4 - s4), r4(μ4),
and r4(μ4 + s4). Above, μj and sj denote the mean and
standard deviation of the birthweights in component

j (1 <= j <= 4). This was repeated nine more times, and
we tabulated how many of the 120 = 12 × 10 confidence
intervals contained their targets. Confidence intervals
were also formed using Equation (5) for comparative
purposes. The above steps were repeated with overlap-
ping data sets consistent with a population of 1,000,000
and with nonoverlapping data sets consistent with an
effectively infinite population.
The results are summarized in Table 3. With an effec-

tively infinite population, only 75.0% of the confidence
intervals formed using Equation (5) contained their tar-
gets at C = 5.0. On the other hand, the confidence inter-
vals formed using Equation (6) contained their targets
95.0% of the time at C = 4.0. The latter finding provided
the rationale for taking C0 = 4.0 when constructing con-
fidence intervals for mortality risks in our examples
with real data.
b. Another example with real data
We drew Nrep = 25 samples of size 50,000 from the
population of 9,162,303 white singletons born from
2000 to 2002, without regard to maternal smoking sta-
tus. Figure 2a and Table 4 present overall estimates and
confidence intervals for parameters in a 4-component
normal mixture, while Figure 2b and Table 5 pertain to
mortality risks. Confidence intervals for mixture para-
meters are based on Equations (7) and (8) in the pre-
vious paper with � = .0055 = 50,000/9,162,303 and C0 =
2.5. Confidence intervals for mortality risks are based on
Equations (6) and (7) in the present paper with � =
.0055 and C0 = 4.0.
The confidence intervals for p2, p3, μ2, s4 are consid-

erably narrower than they were for white singletons
born to heavily-smoking mothers, as are the confidence
bounds for r1(x) in the VLBW range, r2(x) in the
MLBW range, and r3(x) in much of the NBW range.
The confidence bounds for r2(x) do not overlap those
for r3(x) or r4(x) anywhere in the NBW range, indicating
heterogeneity in mortality risk. In particular, the odds of
mortality at 3000 g are an estimated 9.77 times as large
in component 2 as in component 3 (95% confidence
interval, 2.35 to 40.6) and an estimated 4.15 times as
large in component 2 as in component 4 (95% confi-
dence interval, 2.04 to 8.43).

Table 2 Mixture Model and Mortality Functions for Simulation Study

Model feature Specification for simulation study

Probability density for mixture model .007 f(x;832,210) +.182 f(x;2772,740) +.758 f(x;3170,417) +.052 f(x;3804,413)

Risk within component 1 r1(x) = logit -1(-4.6975 -0.2362 z + 0.3994 z2 + 0.1690 z3 + 0.1328 z4)

Risk within component 2 r2(x) = logit -1(-4.0962 -0.7496 z - 0.0289 z2 - 0.1094 z3 + 0.0918 z4)

Risk within component 3 r3(x) = logit -1(-5.7538 -1.7275 z + 1.6269 z2 + 0.1897 z3 - 0.0249 z4)

Risk within component 4 r4(x) = logit -1(-5.3285 -0.2786 z - 0.1979 z2 + 0.0535 z3 + 0.0773 z4)

The probability density for the mixture model used in our simulation study is specified, as are the mortality risk functions associated with the mixture model
components. Above, z is defined as (x - 3000)/1000, where x is birthweight in grams.
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The reason that mixture parameters and mortality
risks are estimated more precisely for white singletons
in general than for white singletons born to heavily-
smoking mothers is that Nrep = 25 samples of size
50,000 from a population of 9,162,303 contain approxi-
mately 1,171,467 distinct records, far more than
the approximately 202,677 distinct records contained in
Nrep = 25 samples of size 50,000 from a population of
202,849. (Section II of [Additional file 1] from our pre-
vious paper provides a formula from which one may
approximate the number of distinct records in multiple
samples from the same population.) Even more precise
estimation is possible for white singletons in general if
Nrep is taken larger.

Discussion
This paper completes a two-part series on a new frame-
work for modeling birthweight distributions and fetal-
infant mortality. The main advantage of this new frame-
work is its potential to reveal heterogeneity in mortality
risk that may be undetectable if one relies on a

contaminated normal model or 2-component normal
mixture to represent a birthweight distribution.
With the contaminated normal model, the lower resi-

dual distribution and the predominant distribution have
little overlap. As such, there is little overlap in the ranges
of birthweights over which each component has a well-
defined risk function. This is depicted in Figure 1b,
where the red and green dashed curves do not occupy
the same birthweights except for a small interval near
1700 g. Thus, except for birthweights close to 1700 g, the
contaminated normal model effectively imposes a unique
mortality risk for all infants at any fixed birthweight. This
occurs because the contaminated normal model classifies
all NBW cases, along with almost all MLBW and HBW
cases, as originating from the predominant distribution,
while it classifies virtually all VLBW and ELBW births as
arising from the lower residual distribution. Yet, presum-
ably some compromised pregnancies yield MLBW,
NBW, and HBW births. Hence, not only does the esti-
mated proportion .975 overstate the fraction of uncom-
promised pregnancies, but also no distinction can be

Table 3 Confidence Interval Coverage Probabilities in Simulation Study

C Population Size Bias adjustment included Bias adjustment omitted

Number & Percentage of Intervals Containing
Targets (mortality risks)

Number & Percentage of Intervals Containing
Targets (mortality risks)

2.0 200,000 69 (57.5) 26 (21.7)

1,000,000 92 (76.7) 26 (21.7)

Infinite 92 (76.7) 43 (35.8)

2.5 200,000 78 (65.0) 29 (24.2)

1,000,000 100 (83.3) 37 (30.8)

Infinite 96 (80.0) 47 (39.2)

3.0 200,000 84 (70.0) 32 (26.7)

1,000,000 106 (88.3) 44 (36.7)

Infinite 102 (85.0) 56 (46.7)

3.5 200,000 89 (74.2) 35 (29.2)

1,000,000 111 (92.5) 54 (45.0)

Infinite 110 (91.7) 60 (50.0)

4.0 200,000 93 (77.5) 44 (36.7)

1,000,000 116 (96.7) 63 (52.5)

Infinite 114 (95.0) 65 (54.2)

4.5 200,000 97 (80.8) 48 (40.0)

1,000,000 117 (97.5) 72 (60.0)

Infinite 115 (95.8) 76 (63.3)

5.0 200,000 102 (85.0) 57 (47.5)

1,000,000 117 (97.5) 79 (65.8)

Infinite 115 (95.8) 90 (75.0)

The row with “C“ = 2 and “Population size” = 200,000 identifies the numbers and percentages of confidence intervals containing their targets of mortality risks at
selected birthweights (three for each of four mixture components), based on 10 repetitions in each of which 25 samples of size 50,000 were simulated from a 4-
component normal mixture. Results under the heading of “Bias adjustment included” are based on Equation (6) with C = 2. Results under the heading of “Bias
adjustment omitted” are based on Equation (5) with C = 2. The 25 samples of size 50,000 had overlap consistent with a population size of 200,000. Other rows
correspond to different choices of C and/or population sizes.
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made between compromised and uncompromised preg-
nancies at birthweights above 1700 g.
In contrast, the 2-component normal mixture has some

ability to reveal heterogeneity. However, this ability is
limited to the MLBW, NBW, and HBW ranges. As
shown in Figure 1c, the 2-component normal mixture
effectively imposes a unique mortality risk at each birth-
weight in the VLBW and ELBW ranges. At first glance,
that may not seem worrisome. After all, the MLBW,
NBW, and HBW cases may arise from a mix of compro-
mised and uncompromised pregnancies, while presum-
ably the VLBW and ELBW cases arise almost exclusively
from compromised pregnancies. Yet, implicit in the 2-
component normal mixture is a belief that all compro-
mised pregnancies are qualitatively similar, in the sense
of sharing a common birthweight-specific mortality
curve. Perhaps such a belief is approximately valid for
some populations. Unfortunately, the 2-component nor-
mal mixture imposes this belief mathematically and does
not provide any way for it to be tested empirically. The
framework that we have presented, on the other hand,

allows such a belief to be tested empirically. Indeed, the
example in Section 3b of Results shows that component
2 in the population of white singletons has demonstrably
higher mortality risk at some birthweights than compo-
nent 4 in the same population. We regard component 3
as most plausibly representing uncompromised pregnan-
cies in this population, so that components 2 and 4 most
plausibly consist of compromised pregnancies. Therefore,
not all compromised pregnancies in this population share
a common birthweight-specific mortality curve.
The components identified in our empirical explorations

are undoubtedly related to gestational age. While detailed
speculations about the precise nature of the relationship
are premature, one or more of the components may have
an elevated rate of intrauterine growth restriction (IUGR).
Typically, IUGR is measured in population-based vital sta-
tistics data as births below (variously) the 5th or 10th per-
centile of birthweight for gestational age. Other aspects
not presently measured on birth certificates in the United
States include head circumference at birth, birth length
(i.e., crown-heel length or crown-rump length), and
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Figure 2 Mixture Modeling Results and Mortality for White Singleton Infants. (a) A 4-component normal mixture model, with parameters
estimated by combining the results for 25 samples of size 50,000 from the population of white singletons in general, is shown. (b) Estimated
birthweight specific-mortality curves are presented for each component of a 4-component normal mixture model, along with confidence
bounds determined by Equations (6) and (7) with C0 = 4.0 and � = .0055 based on 25 samples of size 50,000 from the population of white
singletons in general.
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waist/hip ratio. However IUGR might be quantified, its
frequency within each component could be estimated as
indicated in the next paragraph.
A useful extension of our methodology would entail

probabilistically relating a covariate of interest, such as
gestational age or IUGR, to the mixture components.
Suppose that the covariate of interest were dichotomous.
For gestational age, we could create a dichotomy by
labeling infants as “preterm” or “term”. Then, given a
fitted k-component mixture model for birthweight dis-
tribution, we could apply PMLR with dichotomized
gestational age or IUGR rather than mortality as the
dependent variable. The resulting r xj

∧
( ) would denote

not the estimated mortality risk but rather the estimated
probability of a preterm birth or of IUGR as a function
of birthweight within component j (1 <= j <= k). To
estimate the overall probability of a preterm birth or of

IUGR within component j, we would integrate r xj
∧
( )

over the estimated distribution of birthweights within
component j,

r x f x dxj j j
∧ ∧ ∧∫ ( ) ( ; , ) .  (10)

Pursuing this idea and extending it to multiple covari-
ates, both categorical and continuous, would enable us

Table 4 Mixture Modeling Results for White Singleton Infants

Quantity p1 p2 p3 p4


∧ [average of 25 estimates] .005 .117 .810 .068

S
∧


[standard deviation of 25 estimates] .001 .010 .012 .006

B
∧


[bias adjustment] .001 .012 .011 .007

Confidence interval (.004, .006) (.099, .135) (.792, .827) (.058, .078)

Quantity μ1 μ2 μ3 μ4


∧ [average of 25 estimates] 862 2948 3402 4056

S
∧


[standard deviation of 25 estimates] 60 52 6 18

B
∧


[bias adjustment] 22 47 4 36

Confidence interval (809, 915) (2874, 3021) (3395, 3410) (4011, 4100)

Quantity s1 s2 s3 s4

B
∧


[average of 25 estimates] 233 776 421 416

S
∧


[standard deviation of 25 estimates] 40 23 5 19

B
∧


[bias adjustment] 42 25 5 11

Confidence interval (170, 295) (739, 813) (413, 429) (395, 437)

Parameters in a 4-component normal mixture model for birthweight distribution are estimated, based on 25 samples of size 50,000 from the population of white
singletons in general. Confidence intervals are constructed using Equations (6) and (7) with C0 = 2.5 and � = .0055.

Table 5 Mortality for White Singleton Infants

Quantity @ 1000 g @ 2000 g @ 3000 g @ 4000 g

Risk in component 1: logit-1{
∧ } [point estimate] Confidence interval 124.3 (71.1,

208.4)
— — —

Risk in component 2: logit-1{
∧ } [point estimate] Confidence interval 242.8 (34.3,

743.1)
52.1 (41.3,
65.6)

17.0 (9.0, 31.9) 12.1 (6.6, 22.2)

Risk in component 3: logit-1{
∧ } [point estimate] Confidence interval — — 1.8 (0.8, 4.1) 0.3 (0.02, 3.9)

Risk in component 4: logit-1{
∧ } [point estimate] Confidence interval — — 4.2 (3.1, 5.7) 1.2 (0.4, 3.8)

Odds ratio, component 1 vs. component 2: exp{
∧ } [point estimate] Confidence

interval
0.44 (0.03, 6.90) — — —

Odds ratio, component 2 vs. component 3: exp{
∧ } [point estimate] Confidence

interval
— — 9.77 (2.35,

40.6)
44.3 (2.55,
768)

Odds ratio, component 2 vs. component 4: exp{
∧ } [point estimate] Confidence

interval
— — 4.15 (2.04,

8.43)
10.4 (3.24,
33.6)

Odds ratio, component 3 vs. component 4: exp{
∧ } [point estimate] Confidence

interval
— — 0.42 (0.18,

1.01)
0.24 (0.01,
5.34)

Mortality risks and odds ratios are estimated at selected birthweights, based on 25 samples of size 50,000 from the population of white singletons in general.
Confidence intervals are constructed using Equations (6) and (7) with C0 = 4.0 and � = .0055.
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to describe the joint distribution of covariates within
each mixture component. If the joint distributions of
covariates within different mixture components had lit-
tle overlap, then we would be able to assert an approxi-
mate correspondence between the mixture components
and identifiable subpopulations with biological meaning.
Such discoveries would provide greater epidemiologic
insight into the relationships among fetal-infant mortal-
ity and its prognostic factors.

Conclusions
The present paper, the second in a two-part series,
develops a new and flexible approach to modeling fetal-
infant mortality through the estimation of separate
birthweight-specific mortality curves within each com-
ponent of a normal mixture model describing a birth-
weight distribution, the number of components having
been determined from the data rather than fixed a
priori. This approach allows the detection of heteroge-
neity in mortality that cannot be found with a contami-
nated normal model or a 2-component normal mixture
model. A 2-component normal mixture model assumes
that infants from compromised pregnancies share a
common birthweight-specific mortality curve, while a
contaminated normal model assumes that all infants
share a common curve over some (possibly quite large)
interval of birthweights. Yet, our approach has demon-
strated that components 2 and 4 in a 4-component nor-
mal mixture model for white singleton birthweights
have distinct birthweight-specific mortality curves. Since
components 2 and 4 in this population most plausibly
consist of compromised pregnancies, we see that infants
from compromised pregnancies need not share a com-
mon birthweight-specific mortality curve. Finally, this
paper lays some groundwork for future research aimed
at discovering approximate correspondences between
mixture model components and identifiable
subpopulations.

Methods
[Additional file 1] presents technical details on our
methodology and its implementation.

Additional material

Additional file 1: Technical Appendix. Additional file 1 presents
technical details on our methodology and its implementation.
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